
W
he

th
er

 y
o

u’
re

 a
 b

eg
in

ne
r

o
r

b
ri

ng
in

g
 y

o
ur

 s
ki

lls
 u

p
 t

o
 d

a
te

, t
hi

s
b

o
o

k
g

iv
es

 y
o

u
a

 s
o

lid
 f

o
ot

in
g

 in

m
o

d
er

n
w

eb
 p

ro
d

uc
ti

o
n.

 I
te

a
ch

 e
a

ch
 t

o
p

ic
 v

is
ua

lly
 a

t
a

 p
le

a
sa

nt
 p

a
ce

, w
it

h
fr

eq
ue

nt
 e

xe
rc

is
es

to

 le
t

yo
u

tr
y

o
ut

 n
ew

 s
ki

lls
. R

ea
d

in
g

 it
 f

ee
ls

 li
ke

 s
it

ti
ng

 in
 m

y
cl

a
ss

ro
o

m
!

—
J

en
ni

fe
r

R
o

b
b

in
s

Learning
Web Design
A BEGINNER'S GUIDE TO HTML, CSS,
JAVASCRIPT, AND WEB GRAPHICS

Jennifer Niederst Robbins

“Unlike all the other books that start at the beginning, this one
will get you to the good stuff, fast. Jennifer will explain every
step you need, including some very advanced concepts.”

—JEN SIMMONS, MOZILLA AND W3C CSS WORKING GROUP

5TH EDITION

Fifth Edition

LEARNING WEB DESIGN
A BEGINNER’S GUIDE TO HTML, CSS,

JAVASCRIPT, AND WEB GRAPHICS

Jennifer Niederst Robbins

Beijing • Boston • Farnham • Sebastopol • Tokyo

Learning Web Design, Fifth Edition
A Beginner’s Guide to HTML, CSS, JavaScript, and Web Graphics

by Jennifer Niederst Robbins

Copyright © 2018 O’Reilly Media, Inc. All rights reserved.
Printed in Canada.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly Media books may be purchased for educational, business, or sales promotional use. Online editions are also avail-
able for most titles (oreilly.com/safari). For more information, contact our corporate/institutional sales department: 800-998-
9938 or corporate@oreilly.com.

EDITORS: Meg Foley and Jeff Bleiel

PRODUCTION EDITOR: Kristen Brown

COVER DESIGNER: Edie Freedman

INTERIOR DESIGNER: Jennifer Robbins

PRINT HISTORY:

March 2001: First edition.

June 2003: Second edition.

June 2007: Third edition.

August 2012: Fourth edition.

May 2018: Fifth edition.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. “O’Reilly Digital Studio” and related trade dress are
trademarks of O’ReillyMedia, Inc. Photoshop, Illustrator, Dreamweaver, Elements, HomeSite, and Fireworks are either regis-
tered trademarks or trademarks of Adobe Systems Incorporated in the United States and/or other countries. Microsoft and
Expression Web are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other
countries. Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trade-
marks. Where those designations appear in this book, and O’ReillyMedia, Inc. was aware of a trademark claim, the designa-
tions have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume no responsibility for
errors or omissions, or for damages resulting from the use of the information contained herein.

ISBN: 978-1-491-96020-2
[TI] [2018-04-16]

CONTENTS

FOREWORD xi

PREFACE xiii

PART I. GETTING STARTED

1. Getting Started in Web Design .. 3
Where Do I Start? ... 4

It Takes a Village (Website Creation Roles).. 4

Gearing Up for Web Design .. 14

What You’ve Learned .. 20

Test Yourself ... 20

2. How the Web Works.. 21
The Internet Versus the Web ... 21

Serving Up Your Information .. 22

A Word About Browsers.. 23

Web Page Addresses (URLs).. 24

The Anatomy of a Web Page.. 27

Putting It All Together... 32

Test Yourself ... 34

3. Some Big Concepts You Need to Know............................ 35
A Multitude of Devices ... 36

Sticking with the Standards... 38

Progressive Enhancement .. 38

iii

Responsive Web Design .. 40

One Web for All (Accessibility) ... 42

The Need for Speed (Site Performance) .. 44

Test Yourself ... 46

PART II. HTML FOR STRUCTURE

4. Creating a Simple Page ... 49
A Web Page, Step-By-Step ... 49

Launch a Text Editor ... 50

Step 1: Start with Content ... 53

Step 2: Give the HTML Document Structure 55

Step 3: Identify Text Elements ... 59

Step 4: Add an Image .. 62

Step 5: Change the Look with a Style Sheet 66

When Good Pages Go Bad .. 67

Validating Your Documents ... 68

Test Yourself ... 70

Element Review: HTML Document Setup 70

5. Marking Up Text .. 71
Paragraphs .. 71

Headings ... 72

Thematic Breaks (Horizontal Rule) .. 74

Lists .. 74

More Content Elements ... 78

Organizing Page Content ... 82

The Inline Element Roundup ... 88

Generic Elements (div and span) .. 98

Improving Accessibility with ARIA ... 102

Character Escapes ... 105

Putting It All Together ... 108

Test Yourself ..111

Element Review: Text Elements ... 112

Contents

iv

6. Adding Links ... 113
The href Attribute ..114

Linking to Pages on the Web ... 115

Linking Within Your Own Site ..116

Targeting a New Browser Window .. 126

Mail Links .. 127

Telephone Links .. 128

Test Yourself ... 128

Element Review: Links .. 130

7. Adding Images .. 131
First, a Word on Image Formats .. 132

The img Element ... 134

Adding SVG Images .. 139

Responsive Image Markup .. 146

Whew! We’re Finished .. 159

Test Yourself ... 159

Element Review: Images ..162

8. Table Markup .. 163
How to Use Tables .. 163

Minimal Table Structure ... 165

Table Headers ... 167

Spanning Cells .. 168

Table Accessibility ...169

Row and Column Groups ...171

Wrapping Up Tables .. 173

Test Yourself ..175

Element Review: Tables ..176

9. Forms ... 177
How Forms Work.. 177

The form Element ...179

Variables and Content ... 182

The Great Form Control Roundup... 183

Form Accessibility Features ... 203

Contents

v

Form Layout and Design ... 206

Test Yourself ... 208

Element Review: Forms ... 209

10. Embedded Media .. 215
Window-In-A-Window (iframe) .. 215

Multipurpose Embedder (object) ..218

Video and Audio ... 219

Canvas .. 228

Test Yourself ... 233

Element Review: Embedded Media .. 234

PART III. CSS FOR PRESENTATION

11. Introducing Cascading Style Sheets 239
The Benefits of CSS ... 239

How Style Sheets Work ... 240

The Big Concepts .. 246

CSS Units of Measurement .. 253

Developer Tools Right in Your Browser ... 256

Moving Forward with CSS .. 258

Test Yourself ... 259

12. Formatting Text .. 261
Basic Font Properties ... 261

Advanced Typography with CSS3 .. 277

Changing Text Color ... 280

A Few More Selector Types ... 281

Text Line Adjustments .. 287

Underlines and Other “Decorations” ... 290

Changing Capitalization .. 291

Spaced Out ... 292

Text Shadow ... 293

Changing List Bullets and Numbers .. 296

Test Yourself ... 299

CSS Review: Font and Text Properties ... 301

Contents

vi

13. Colors and Backgrounds ... 303
Specifying Color Values ... 303

Foreground Color ...311

Background Color ... 312

Clipping the Background ..314

Playing with Opacity ... 315

Pseudo-Class Selectors ...316

Pseudo-Element Selectors .. 320

Attribute Selectors ... 323

Background Images ..324

The Shorthand background Property ... 338

Like a Rainbow (Gradients) ... 340

Finally, External Style Sheets ... 348

Wrapping It Up ... 351

Test Yourself ... 352

CSS Review: Color and Background Properties 354

14. Thinking Inside the Box .. 355
The Element Box ... 355

Specifying Box Dimensions ... 356

Padding .. 361

Borders ... 366

Margins ...376

Assigning Display Types .. 380

Box Drop Shadows .. 382

Test Yourself ... 384

CSS Review: Box Properties .. 384

15. Floating and Positioning ... 387
Normal Flow ... 387

Floating .. 388

Fancy Text Wrap with CSS Shapes ... 399

Positioning Basics .. 405

Relative Positioning ... 407

Absolute Positioning .. 408

Fixed Positioning ..416

Contents

vii

Test Yourself ..417

CSS Review: Floating and Positioning Properties418

16. CSS Layout with Flexbox and Grid 419
Flexible Boxes with CSS Flexbox ..419

CSS Grid Layout ... 447

Test Yourself ... 478

CSS Review: Layout Properties .. 482

17. Responsive Web Design .. 485
Why RWD? ... 485

The Responsive Recipe .. 486

Choosing Breakpoints ... 495

Designing Responsively ... 499

A Few Words About Testing .. 512

More RWD Resources ..514

Test Yourself ..516

18. Transitions, Transforms, and Animation 517
Ease-y Does It (CSS Transitions) ...517

CSS Transforms .. 527

Keyframe Animation ... 536

Wrapping Up .. 542

Test Yourself ... 542

CSS Review: Transitions, Transforms, and Animation 545

19. More CSS Techniques .. 547
Styling Forms .. 547

Styling Tables .. 551

A Clean Slate (Reset and Normalize.css) .. 553

Image Replacement Techniques ... 556

CSS Sprites .. 557

CSS Feature Detection... 559

Wrapping Up Style Sheets ... 564

Test Yourself ... 564

CSS Review: Table Properties .. 566

Contents

viii

20. Modern Web Development Tools 567
Getting Cozy with the Command Line .. 567

CSS Power Tools (Processors) .. 572

Build Tools (Grunt and Gulp) .. 578

Version Control with Git and GitHub .. 581

Conclusion .. 588

Test Yourself ... 589

PART IV. JAVASCRIPT FOR BEHAVIOR

21. Introduction to JavaScript .. 593
What Is JavaScript? ... 593

Adding JavaScript to a Page ... 597

The Anatomy of a Script .. 598

The Browser Object ... 612

Events ... 613

Putting It All Together ..616

Learning More About JavaScript ..617

Test Yourself ... 619

22. Using JavaScript ... 621
Meet the DOM .. 621

Polyfills ... 630

JavaScript Libraries ... 632

Big Finish .. 637

Test Yourself ... 637

PART V. WEB IMAGES

23. Web Image Basics ... 641
Image Sources ... 641

Meet the Formats .. 644

Image Size and Resolution ... 657

Image Asset Strategy ... 660

Favicons .. 665

Contents

ix

Summing Up Images ... 668

Test Yourself .. 668

24. Image Asset Production .. 671
Saving Images in Web Formats .. 671

Working with Transparency .. 676

Responsive Image Production Tips .. 680

Image Optimization .. 691

Test Yourself ..701

25. SVG .. 703
Drawing with XML ... 705

Features of SVG as XML ... 713

SVG Tools ... 718

SVG Production Tips ... 721

Responsive SVGs ... 724

Further SVG Exploration ... 731

Test Yourself .. 731

And...We’re Done! ... 733

PART VI. APPENDICES

A. Answers .. 737

B. HTML5 Global Attributes ... 753

C. CSS Selectors, Levels 3 and 4 .. 755

D. From HTML+ to HTML5 .. 759

INDEX 767

Contents

x

FOREWORD
BY JEN SIMMONS

If you travel to Silicon Valley and navigate between the global headquarters
of some of the world’s most famous internet companies, you can head to
the Computer History Museum. Wander through the museum, past the
ancient mainframes and the story of the punch card, and you’ll eventually
find yourself at the beginning of the Wide World Web. There’s a copy of the
Mosaic browser on a floppy disk tucked in a book of the same name, a copy
of Netscape Navigator that was sold in a box, and something called “Internet
in a Box,” the #1 best-selling internet solution for Windows. Then there are
the websites. Some of the earliest, most notable, and most important websites
are on permanent display, including something called the “Global Network
Navigator,” from 1993. It was designed by none other than the author of this
book, Jennifer Robbins. Long before most of us had any idea the web existed,
or even before many of you were born, Jen was busy designing the first com-
mercial website. She’s been there from the very beginning, and has watched,
taught, and written about every stage of evolution of the web.

Learning Web Design is now in its 5th edition, with a gazillion new pages and
updates from those early days.

I am constantly asked, “What are the best resources for learning web technol-
ogy?” I learned by reading books. Blog posts are great, but you also need an
in-depth comprehensive look at the subject. In the beginning, all books were
beginner books, teaching HTML, URLs, and how to use a browser. When
CSS came along, the books assumed you’d already been using HTML, and
taught you how to change to the new techniques. Then CSS3 came along,
and all the books taught us how to add new CSS properties to our preexist-
ing understanding of CSS2. Of course there were always books for beginners,
but they were super basic. They never touched on professional techniques for
aspiring professionals. Each new generation of books assumed that you had
prior knowledge. Great for those of us in the industry. Tough for anyone new.

xi

But how in the world are you supposed to read about two decades of tech-
niques, discarding what is outdated, and remembering what is still correct?
How are you supposed to build a career from knowledge that’s so basic that
you have no idea what real pros code in their everyday jobs?

You can’t. That’s why today when people ask me for a book recommendation,
I have only one answer. This book.

This book you are reading now doesn’t require any prior knowledge. You
don’t need to have made a web page before, or to have any idea where to get a
code editor. It starts at the very beginning. And yet, unlike all the other books
that start at the beginning, this one will get you to the good stuff, fast. Jen will
explain every step you need, including some very advanced concepts. She’s
packed this book full of cutting edge, insider knowledge from top experts.

I honestly don’t know how she does it. How can someone teach the basics
and the advanced stuff at the same time? Usually you’ll learn those things
years apart, with lots of struggling in the dark in the meantime. Here, Jen
will lift you up from wherever you are in your journey, and take you farther.
Every one of us—myself included, and I’m on the CSS Working Group (the
group of people who invent new CSS)—can learn a lot from this book. I do
every time I pick it up.

Pay attention to the notes in the margins. Read the websites she recommends,
watch the videos. Jen is giving you a shortcut to a professional network.
Follow the people she mentions. Read the links they suggest. These might
be your future colleagues. Dare to dream that you will meet them. They are,
after all, only a tweet away. It is a small world, full of real people, and you can
become part of it all. This book will get you started.

—Jen Simmons
Designer and Developer Advocate at Mozilla

Member of the CSS Working Group
April 2018

Learning Web Designxii

Foreword

PREFACE

Hello and welcome to the fifth edition of Learning Web Design!

I’ve been documenting web design and development in books like this one
for decades, and it continues to fascinate me how the web landscape changes
from edition to edition. This fifth edition is no exception! Not only is this
version nearly 200 pages longer than the last one, but there are also some
significant updates and additions worth noting.

First, some technologies and techniques that were brand new or even experi-
mental in the last edition have become nicely settled in. HTML5 is the new
normal, and CSS is moving ahead with its modular approach, allowing new
technologies to emerge and be adopted one at a time. We’ve largely gotten our
heads around designing for a seemingly infinite range of devices. Responsive
Web Design is now the de facto approach to building sites. As a result, RWD
has earned its own chapter in this edition (Chapter 17, Responsive Web
Design). Where in the last edition we pondered and argued how to handle
responsive image markup, in this edition, the new responsive image elements
are standardized and well supported (Chapter 7, Adding Images). I think
we’re getting the hang of this mobile thing!

I’ve seen a lot of seismic shifts in web design over the years, and this time,
Flexbox and Grid are fundamentally changing the way we approach design.
Just as we saw CSS put table-based layouts and 1-pixel spacer GIFs out of
their misery, Flexbox and Grid are finally poised to kick our old float-based
layout hacks to the curb. It is nothing short of a revolution, and after 25 years,
it’s refreshing to have an honest-to-goodness solution for layout. This edition
sports a new (and hefty!) chapter on proper page layout with Flexbox and
Grid (Chapter 1, CSS Layout with Flexbox and Grid).

Although knowledge of HTML, CSS, and JavaScript is at the heart of web
development, the discipline has been evolving, and frankly, becoming more

O N L I N E R E S O U RC E

The Companion Website
Be sure to visit the companion
website for this book at
learningwebdesign.com.

It features materials for the
exercises, downloadable articles,
lists of links from the book, contact
information, and more.

xiii

complicated. I would be shirking my duty if I didn’t at least introduce you to
some of the new tools of the trade—CSS processors, feature detection, the com-
mand line, task runners, and Git—in a new chapter on the modern web devel-
oper toolkit (Chapter 20, Modern Web Development Tools). Sure, it’s more
stuff to learn, but the benefit is a streamlined and more efficient workflow.

The biggest surprise to me personally was how much web image production
has changed since the fourth edition. Other than the introduction of the
PNG format, my graphics chapters have remained essentially unchanged for
20 years. Not so this time around! Our old standby, GIF, is on the brink of
retirement, and PNG is the default thanks to its performance advantages and
new tools that let even smaller 8-bit PNGs include multiple levels of transpar-
ency. But PNG will have to keep its eye on WebP, mentioned in this edition for
the first time, which may give it a run for its money in terms of file size and
capabilities. The biggest web graphics story, however, is the emergence of SVG
(Scalable Vector Graphics). Thanks to widespread browser support (finally!),
SVG went from a small “some day” section in the previous edition to an entire
“go for it!” chapter in this one (Chapter 25, SVG).

As in the first four editions, this book addresses the specific needs and con-
cerns of beginners of all backgrounds, including seasoned graphic designers,
programmers looking to expand their skills, and anyone else wanting to learn
how to make websites. I’ve done my best to put the experience of sitting in my
beginner web design class into a book, with exercises and tests along the way,
so you get hands-on experience and can check your progress.

Whether you are reading this book on your own or using it as a companion
to a web design course, I hope it gives you a good head start and that you
have fun in the process.

HOW THIS BOOK IS ORGANIZED

Learning Web Design, Fifth Edition, is divided into five parts, each dealing with
an important aspect of web development.

Part I: Getting Started

Part I lays a foundation for everything that follows in the book. I start off
with some important general information about the web design environ-
ment, including the various roles you might play, the technologies you
might learn, and tools that are available to you. You’ll get your feet wet
right away with HTML and CSS and learn how the web and web pages
generally work. I’ll also introduce you to some Big Concepts that get you
thinking in the same way that modern web designers think about their craft.

Part II: HTML for Structure

The chapters in Part II cover the nitty-gritty of every element and attri-
bute available to give content semantic structure. We’ll cover the markup
for text, links, images, tables, forms, and embedded media.

Learning Web Designxiv

Preface

Part III: CSS for Presentation

In the course of Part III, you’ll go from learning the basics of Cascading
Style Sheets for changing the presentation of text to creating multicolumn
layouts and even adding time-based animation and interactivity to the
page. It provides an introduction to Responsive Web Design, as well as the
tools and techniques that are part of the modern developer’s workflow.

Part IV: JavaScript for Behavior

Mat Marquis starts Part IV out with a rundown of JavaScript syntax so
that you can tell a variable from a function. You’ll get to know some ways
that JavaScript is used (including DOM scripting) and existing JavaScript
tools such as polyfills and libraries that let you put JavaScript to use
quickly, even if you aren’t quite ready to write your own code from scratch.

Part V: Web Images

Part V introduces the various image file formats that are appropriate for
the web, provides strategies for choosing them as part of a responsive
workflow, and describes how to optimize them to make their file size as
small as possible. It also includes a chapter on SVG graphics, which offer
great advantages for responsive and interaction design.

Part VI: Appendices

Part VI holds reference material such as test answers, lists of HTML global
attributes and CSS Selectors, and a look at HTML5 and its history.

TYPOGRAPHICAL CONVENTIONS

Italic

Used to indicate filenames and directory names, as well as for emphasis.

Colored italic

Used to indicate URLs and email addresses.

Colored roman text

Used for special terms that are being defined.

Constant width

Used to indicate code examples and keyboard commands.

Colored constant width

Used for emphasis in code examples.

Constant width italic

Used to indicate placeholders for attribute and style sheet property values.

→
Indicates that a line of code was broken in the text but should remain
together on one line in use.

Preface xv

Preface

ACKNOWLEDGMENTS

Once again, many smart and lovely people had my back on this edition.

I want to say a special thanks to my two amazing tech reviewers. I am quite
indebted to Elika J. Etemad (fantasai), who, as a member of the W3C CSS
Working Group, helped me make this edition more accurate and up-to-date
with standards than ever before. She was tough, but the results are worth it.
Petter Dessne brought his computer science expertise as well as valuable per-
spective as a professor and a reader for whom English is a second language.
His good humor and photos of his home in Sweden were appreciated as well!

I am also grateful for this roster of web design superstars who reviewed
particular chapters and passages in their areas of expertise (in alphabetical
order): Amelia Bellamy-Royds (SVG), Brent Beer (developer tools), Chris
Coyier (SVG), Terence Eden (audio/video), Brad Frost (Responsive Web
Design), Lyza Danger Gardner (developer tools), Jason Grigsby (images), Val
Head (animation), Daniel Hengeveld (developer tools), Mat Marquis (respon-
sive images), Eric Meyer (CSS layout), Jason Pamental (web fonts), Dan Rose
(images), Arsenio Santos (embedded media), Jen Simmons (CSS layout),
Adam Simpson (developer tools), and James Williamson (structured data).

Thanks also to Mat Marquis for his contribution of two lively JavaScript
chapters that I could never have written myself, and to Jen Simmons for writ-
ing the Foreword and for her ongoing support of Learning Web Design.

I want to thank my terrific team of folks at O’Reilly Media: Meg Foley
(Acquisitions Editor), Jeff Bleiel (Developmental Editor), Kristen Brown
(Production Editor), Rachel Monaghan (Copyeditor), Sharon Wilkey
(Proofreader), and Lucie Haskins (Indexer). Special thanks go to InDesign
and book production expert Ron Bilodeau, who turned my design into a tem-
plate and a set of tools that made book production an absolute joy. Special
thanks also go to Edie Freedman for the beautiful cover design and half a
lifetime of friendship and guidance.

Finally, no Acknowledgments would be complete without profound apprecia-
tion for the love and support of my dearest ones, Jeff and Arlo.

ABOUT THE AUTHOR

Jennifer Robbins began designing for the web in 1993 as the graphic designer
for Global Network Navigator, the first commercial website. In addition to
this book, she has written multiple editions of Web Design in a Nutshell and
HTML5 Pocket Reference, published by O’Reilly. She is a founder and orga-
nizer of the Artifact Conference, which addresses issues related to mobile web
design. Jennifer has spoken at many conferences and has taught beginning
web design at Johnson and Wales University in Providence, Rhode Island.
When not on the clock, Jennifer enjoys making things, indie rock, cooking,
travel, and raising a cool kid.

Learning Web Designxvi

Preface

HOW TO CONTACT US

Please address comments and questions concerning this book to the
publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples,
and any additional information. You can access this page at bit.ly/
learningWebDesign_5e.

To comment or ask technical questions about this book, send email to
bookquestions@oreilly.com.

For more information about our books, courses, conferences, and news, see
our website at www.oreilly.com.

Find us on Facebook: facebook.com/oreilly

Follow us on Twitter: twitter.com/oreillymedia

Watch us on YouTube: www.youtube.com/oreillymedia

Preface xvii

Preface

I
GETTING STARTED

The web has been around for more than 25 years now, experiencing euphoric
early expansion, an economic-driven bust, an innovation-driven rebirth, and
constant evolution along the way. One thing is certain: the web as a commu-
nication and commercial medium is here to stay. Not only that, it has found
its way onto devices such as smartphones, tablets, TVs, and more. There have
never been more opportunities to put web design know-how to use.

Through my experience teaching web design courses and workshops, I’ve
had the opportunity to meet people of all backgrounds who are interested
in learning how to build web pages. Allow me to introduce you to just a few:

“I’ve been a print designer for 17 years, and now I am feeling pressure to
provide web design services.”

“I’ve been a programmer for years, but I want shift my skills to web develop-
ment because there are good job opportunities in my area.”

“I tinkered with web pages in high school and I think it might be something
I’d like to do for a living.”

“I’ve made a few sites using themes in WordPress, but I’d like to expand my
skills and create custom sites for small businesses.”

Whatever the motivation, the first question is always the same: “Where do I
start?” It may seem like there is a mountain of stuff to learn, and it’s not easy
to know where to jump in. But you have to start somewhere.

This chapter provides an overview of the profession before we leap into
building sites. It begins with an introduction to the roles and responsibilities
associated with creating websites, so you can consider which role is right for
you. I will also give you a heads-up on the equipment and software you will
be likely to use—in other words, the tools of the trade.

1
CHAPTER

GETTING STARTED
IN WEB DESIGN

IN THIS CHAPTER

Content-related disciplines

Design specialties

Frontend development

Backend development

Recommended equipment

Web-related software

3

WHERE DO I START?

Maybe you are reading this book as part of a full course on web design and
development. Maybe you bought it to expand your current skill set on your
own. Maybe you just picked it up out of curiosity. Whatever the case, this
book is a good place to start learning what makes the web tick.

There are many levels of involvement in web design, from building a small
site for yourself to making it a full-blown career. You may enjoy being a “full-
stack” web developer or just specializing in one skill. There are a lot of ways
you can go.

If you are interested in pursuing web design or production as a career, you’ll
need to bring your skills up to a professional level. Employers may not
require a web design degree, but they will expect to see working sample sites
that demonstrate your skills and experience. These sites can be the result of
class assignments, personal projects, or a site for a small business or organiza-
tion. What’s important is that they look professional and have well-written,
clean HTML; style sheets; and scripts behind the scenes.

If your involvement is at a smaller scale—say you just have a site or two you’d
like to publish—you may find using a template on an online website service
is a great head start (see the sidebar “I Just Want My Own Site”). Most allow
you to tweak the underlying code, so what you learn in this book will help
you customize the template to your liking.

IT TAKES A VILLAGE
(WEBSITE CREATION ROLES)

When I look at a site, I see the multitude of decisions and areas of expertise
that went into building it. Sites are more than just code and pictures. They
often begin with a business plan or other defined mission. Before they launch,
the content must be created and organized, research is performed, design
from the broadest goals to finest details must happen, code gets written, and
everything must be coordinated with what’s happening on the server to bring
it to fruition.

Big, well-known sites are created by teams of dozens, hundreds, or even thou-
sands of contributors. There are also sites that are created and maintained by
a team with only a handful of members. It is also absolutely possible to create
a respectable site with a team of only yourself. That’s the beauty of the web.

In this section, I’ll introduce you to the various disciplines that contribute
to the creation of a site, including roles related to content, design, and code.
You may end up specializing in just one area of expertise, working as part
of a team of specialists. If you are designing sites on your own, you will need
to wear many hats. Consider that the day-to-day upkeep of your household

I Just Want My Own Site
You don’t necessarily need to become
a web designer or developer to start
publishing on the web. There are
many website hosting services that
provide templates and drag-and-drop
interfaces that make it easy to build
a site without any code know-how.
They can be used for anything from
full-service ecommerce solutions to
small, personal sites (although some
services are better suited to one more
than the other).

Here are a few of the most popular
site building services as of this
writing:

• WordPress (www.wordpress.com)

• Squarespace (squarespace.com)

• Wix (wix.com)

• SiteBuilder (sitebuilder.com)

• Weebly (weebly.com)

There are many similar services
available, so it’s worth searching the
web to find one that’s right for you.

Part I. Getting Started

Where Do I Start?

4

requires you to be part-time chef, housecleaner, accountant, diplomat, gar-
dener, and construction worker—but to you it’s just the stuff you do around
the house. As a solo designer, you’ll handle many web-related disciplines, but
it will just feel like the stuff you do to make a website.

Content Wrangling
Anyone who uses the title “web designer” needs to be aware that everything
we do supports the process of getting the content, message, or functionality
to our users. Furthermore, good writing can help the user interfaces we create
be more effective, from button labels to error messages.

Of course, someone needs to create all that content and maintain it—don’t
underestimate the resources required to do this successfully. Good writers
and editors are an important part of the team. In addition, I want to call your
attention to two content-related specialists in modern web development: the
Information Architect (IA) and the Content Strategist.

Information architecture
An Information Architect (also called an Information Designer) organizes
the content logically and for ease of findability. They may be responsible
for search functionality, site diagrams, and how the content and data are
organized on the server. Information architecture is inevitably entwined with
UX and UI design (defined shortly) as well as content management. If you
like organizing or are gaga for taxonomies, information architecture may
be the job for you. The definitive text for this field as it relates to the web is
Information Architecture: For the Web and Beyond, by Louis Rosenfeld and
Peter Morville (O’Reilly).

Content strategy
When the content isn’t right, the site can’t be fully effective. A Content
Strategist makes sure that every bit of text on a site, from long explanatory
text down to the labels on buttons, supports the brand identity and mar-
keting goals of the organization. Content strategy may also extend to data
modeling and content management on a large and ongoing scale, such as
planning for content reuse and update schedules. Their responsibilities may
also include how the organization’s voice is represented on social media. A
good place to learn more is the book Content Strategy for the Web, 2nd Edition,
by Kristina Halvorson and Melissa Rich (New Riders).

All Manner of Design
Ah, design! It sounds fairly straightforward, but even this simple requirement
has been divided into a number of specializations when it comes to creating
sites. Here are a few of the job descriptions related to designing a site, but

1. Getting Started in Web Design

It Takes a Village (Website Creation Roles)

5

bear in mind that the disciplines often overlap and that the person calling
herself the “designer” often is responsible for more than one (if not all) of
these responsibilities.

User Experience, Interaction, and User Interface design
Often, when we think of design, we think about how something looks. On
the web, the first matter of business is designing how the site works. Before
you pick colors and fonts, it is important to identify the site’s goals, how it
will be used, and how visitors move through it. These tasks fall under the dis-
ciplines of User Experience (UX) design, Interaction Design (IxD), and User
Interface (UI) design. There is a lot of overlap between these responsibilities,
and it is not uncommon for one person or team to handle all three.

The User Experience designer takes a holistic view of the design process—
ensuring the entire experience with the site is favorable. UX design is based
on a solid understanding of users and their needs based on observations and
interviews. According to Donald Norman (who coined the term), UX design
includes “all aspects of the user’s interaction with the product: how it is
perceived, learned, and used.” For a website or application, that includes the
visual design, the user interface, the quality and message of the content, and
even the overall site performance. The experience must be in line with the
organization’s brand and business goals in order to be successful.

The goal of the Interaction Designer is to make the site as easy, efficient, and
delightful to use as possible. Closely related to interaction design is User
Interface design, which tends to be more narrowly focused on the functional
organization of the page as well as the specific tools (buttons, links, menus,
and so on) that users use to navigate content or accomplish tasks.

The following are deliverables that UX, UI, or interaction designers produce:

User research and testing reports

Understanding the needs, desires, and limitations of users is central to
the success of the design of the site or web application. The approach of
designing around the user’s needs is referred to as User-Centered Design
(UCD), and it is central to contemporary web design. Site designs often
begin with user research, including interviews and observations, in order
to gain a better understanding of how the site can solve problems or how
it will be used. It is typical for designers to do a round of user testing at
each phase of the design process to ensure the usability of their designs.
If users are having a hard time figuring out where to find content or how
to move to the next step in a process, then it’s back to the drawing board.

Wireframe diagrams

A wireframe diagram shows the structure of a web page using only out-
lines for each content type and widget (FIGURE 1-1). The purpose of a
wireframe diagram is to indicate how the screen real estate is divided and
where functionality and content such as navigation, search boxes, form

Part I. Getting Started

It Takes a Village (Website Creation Roles)

6

elements, and so on, are placed. Colors, fonts, and other visual identity
elements are deliberately omitted so as not to distract from the structure
of the page. These diagrams are usually annotated with instructions for
how things should work so the development team knows what to build.

Site diagram

A site diagram indicates the structure of the site as a whole and how
individual pages relate to one another. FIGURE 1-2 shows a very simple
site diagram. Some site diagrams fill entire walls!

SEARCH

LOGO

[PROMOTIONAL IMAGES ROTATE HERE]

Today’s Specials

Log in or Create Account

ABOUT US
Company
News
Jobs
Policies
Contact

SOCIAL
Facebook
Twitter
Try our app

SERVICE
FAQ
Live support
Site map

Product 1 Product 2 Product 4Product 3 Product 6Product 5

Category

All categories

Category1

Category2

Category3

Category4

Category5

Category6

contact | store locator | support | CART

1 2 3 4

copyright statement

FIGURE 1-1. Wireframe diagram.

Home page

Email
form

FAQ

Text

Book Web design
services

Resume

Samples

External links

Contact

FIGURE 1-2. A simple site diagram.

1. Getting Started in Web Design

It Takes a Village (Website Creation Roles)

7

Storyboards and user flow charts

A storyboard traces the path through a site or application from the point
of view of a typical user (a persona in UX lingo). It usually includes a
script and “scenes” consisting of screen views or the user interacting
with the screen. The storyboard aims to demonstrate the steps it takes
to accomplish tasks, outlines possible options, and also introduces some
standard page types. FIGURE 1-3 shows a simple storyboard. A user flow
chart is another method for showing how the parts of a site or application
are connected, but it tends to focus on technical details rather than telling
a story. For example, “when the user does this, it triggers that function on
the server.” It is common for designers to create a user flow chart for the
steps in a process such as member registration or online payments.

FIGURE 1-3. A typical storyboard (courtesy of Adaptive Path and Brandon Schauer).

There are many books on UX, interaction, and UI design, but these are a few
of the classics to get you started:

• The Elements of User Experience: User-Centered Design for the Web and
Beyond by Jesse James Garrett (New Riders)

• Don’t Make Me Think, Revisited: A Common Sense Approach to Web
Usability by Steve Krug (New Riders)

• The Design of Everyday Things by Don Norman (Basic Books)

• About Face: The Essentials of Interaction Design, 4th Edition by Alan
Cooper, Robert Reimann, David Cronin, and Christopher Noessel (Wiley)

• Designing Interfaces, 2nd Edition by Jenifer Tidwell (O’Reilly)

Part I. Getting Started

It Takes a Village (Website Creation Roles)

8

• 100 Things Every Designer Needs to Know about People by Susan
Weinschenk (New Riders)

• Designing User Experience: A Guide to HCI, UX and Interaction Design by
David Benyon (Pearson)

Visual (graphic) design
Because the web is a visual medium, web pages require attention to their
visual presentation. First impressions are everything. A graphic designer cre-
ates the “look and feel” of the site—logos, graphics, type, colors, layout, and
so on—to ensure that the site makes a good first impression and is consistent
with the brand and message of the organization it represents.

There are many methods and deliverables that can be used to present a visual
design to clients and stakeholders. The most traditional are sketches or mock-
ups (created in Photoshop or a similar tool) of the way the site might look,
such as the home page mockups shown in FIGURE 1-4.

Now that sites appear on screens of all sizes, many designers prefer to discuss
the visual identity (colors, fonts, image style, etc.) in a way that isn’t tied to a
specific layout like the typical desktop view shown in FIGURE 1-4. The idea is
to agree upon a visual language for the site before production begins.

One option for separating style from screen size is to use style tiles, a tech-
nique introduced by Samantha Warren (see Note). Style tiles include examples
of color schemes, branding elements, UI treatments, text treatment, and mood
(FIGURE 1-5). Once the details are decided upon, they can be implemented
into working prototypes and the final site. For more on this technique, visit
Samantha’s excellent site, styletil.es, where you can download a template.

Graphic designers may also be responsible for producing the image assets
for the site. They will need to know how to optimize images for the fastest
delivery and how to address the requirements of varying screen sizes. It is also
common for the development team to handle image optimization, but I think
it is a skill every visual designer should have. We’ll discuss image optimiza-
tion in Chapter 24, Image Asset Production.

FIGURE 1-5. Style tile technique introduced by Samantha Warren.

NOTE

Designer Dan Mall uses a similar
approach that he calls “element collag-
es.” An element collage is a collection
of design elements that give the site its
unique look and feel, but like style tiles,
is not tied to a particular screen layout.
Read his article at v3.danielmall.com/
articles/rif-element-collages/.

FIGURE 1-4. Look-and-feel sketches
(mockups) for a simple site.

1. Getting Started in Web Design

It Takes a Village (Website Creation Roles)

9

Designers may also be responsible for creating a style guide that documents
style choices, such as fonts, colors, and other style embellishments, in order to
keep the site consistent over time. For a list of examples, articles, books, and
podcasts about web style guides, visit the “Website Style Guide Resources”
page at styleguides.io.

Do Designers Need to Learn to Code?
In short, yes. A basic familiarity with HTML and CSS is now a requirement of
anybody joining a web design team. You may not be responsible for creating the
final production code for the site, but as HTML and CSS are the native languages
of your medium, you need to know your way around them. Some designers also
learn JavaScript, but others draw the line there and let a developer handle the
programming.

Code is becoming more central to the visual designer’s workflow. Where once
Photoshop was all you needed to mock up web page designs to send them to
production, mockups fixed to a particular size fall short of describing a page that
needs to flex to a wide range of screen sizes. For that reason, designers are building
their own working prototypes as deliverables that communicate how the design will
look and behave in users’ hands.

Code Slinging
A large share of the website building process involves creating and trouble-
shooting the documents, style sheets, scripts, and images that make up a site.
At web design firms, the team that handles the creation of the files that make
up the site (or templates for pages that get assembled dynamically) is usually
called the development or production department.

Development falls under two broad categories: frontend development and
backend development. Once again, these tasks may fall to specialists, but it is
just as common for one person or team to handle both responsibilities.

Frontend development
Frontend refers to any aspect of the design process that appears in or relates
directly to the browser. That includes HTML, CSS, and JavaScript, all of
which you will need to have intricate knowledge of if you want a job as a web
developer. Let’s take a quick look at each.

Authoring/markup (HTML)

Authoring is the process of preparing content for delivery on the web, or more
specifically, marking up the content with HTML tags that describe its content
and function.

HTML (HyperText Markup Language) is the authoring language used to cre-
ate web page documents. The current version (and the version documented

AT A G L A N C E

Frontend Development
Frontend development includes the
following web technologies:

• HyperText Markup Language
(HTML)

• Cascading Style Sheets (CSS)

• JavaScript and DOM scripting,
including AJAX and JavaScript-
based frameworks

Part I. Getting Started

It Takes a Village (Website Creation Roles)

10

in this book) is HTML 5.2. Appendix D, From HTML+ to HTML5, tells the
history of HTML and lists what makes HTML5 unique.

HTML is not a programming language; it is a markup language, which
means it is a system for identifying and describing the various components of
a document such as headings, paragraphs, and lists. The markup indicates the
document’s underlying structure (you can think of it as a detailed, machine-
readable outline). You don’t need programming skills—only patience and
common sense—to write HTML.

The best way to learn HTML is to write out some pages by hand, as we will
be doing in the exercises in Part II of this book.

Styling (CSS)

While HTML is used to describe the content in a web page, Cascading Style
Sheets (CSS) describe how that content should look (see Note). The way the
page looks is referred to as its presentation. Fonts, colors, background images,
line spacing, page layout, and so on, are all controlled with CSS. You can even
add special effects and basic animation to your page.

The CSS specification also provides methods for controlling how documents
will be presented in contexts other than a browser, such as in print or read
aloud by a screen reader; however, we won’t be covering them much here.

Although it is possible to publish web pages using HTML alone, you’ll prob-
ably want to take on style sheets so you’re not stuck with the browser’s default
styles. If you’re looking into designing websites professionally, either as a
designer or as a developer, proficiency at style sheets is mandatory.

JavaScript and DOM scripting

JavaScript is a scripting language that adds interactivity and behaviors to web
pages, including these (to name just a few):

• Checking form entries for valid entries

• Swapping out styles for an element or an entire site

• Loading scrolling feeds with more content automatically

• Making the browser remember information about users

• Building interface widgets, such as embedded video players or special
form inputs

You may also hear the term DOM scripting used in relation to JavaScript.
DOM stands for Document Object Model, and it refers to the standard-
ized list of web page elements that can be accessed and manipulated using
JavaScript (or another scripting language).

Frontend developers may also be required to be familiar with JavaScript
frameworks (such as React, Bootstrap, Angular, and others) that automate a
lot of the production process. They’ll likely also need to be handy with AJAX

NOTE

When this book uses the term “style
sheets,” it always refers to Cascading
Style Sheets, the standard style sheet
language for the World Wide Web. Style
sheets (including what “cascading”
means!) are discussed further in Part III.

The World Wide Web
Consortium
The World Wide Web Consortium
(called the W3C for short) is the
organization that oversees the
development of web technologies
such as HTML, CSS, and JavaScript.
The group was founded in 1994 by
Tim Berners-Lee, the inventor of the
web, at the Massachusetts Institute of
Technology (MIT).

In the beginning, the W3C concerned
itself mainly with the HTTP protocol
and the development of HTML. Now,
the W3C is laying a foundation for
the future of the web by developing
dozens of technologies and protocols
that must work together in a solid
infrastructure.

For the definitive answer to any web
technology question, the W3C site is
the place to go: www.w3.org.

For more information on the W3C and
what it does, see this useful page:
www.w3.org/Consortium/.

1. Getting Started in Web Design

It Takes a Village (Website Creation Roles)

11

(which stands for “Asynchronous JavaScript And XML”), a technique used to
load content in the background, allowing the page to update smoothly with-
out reloading (like those automatically refreshing feeds).

Web scripting definitely requires some traditional computer programming
prowess. While many web developers have degrees in computer science, it is
also common for developers to be self-taught. A few developers I know start-
ed by copying and adapting existing scripts, then gradually added to their
programming skills with each new project. Still, if you have no experience
with programming languages, the initial learning curve may be a bit steep.

If you want to be a web developer for a living, JavaScript is a basic require-
ment. Designers will benefit from understanding what JavaScript can do,
but may not need to learn to write it if they are working with a development
team. Chapter 21, Introduction to JavaScript, will get you started under-
standing how it works, and I recommend Learning JavaScript by Ethan Brown
(O’Reilly) to learn more.

Backend development
Backend developers focus on the server, including the applications and data-
bases that run on it. They may be responsible for installing and configuring
the server software (we’ll be looking more at servers in Chapter 2, How
the Web Works). They will certainly be required to know at least one, and
probably more, server-side programming languages, such as PHP, Ruby, .NET
(or ASP.NET), Python, or JSP, in order to create applications that provide the
functionality required by the site. Applications handle tasks and features like
forms processing, content management systems (CMSs), and online shop-
ping, just to name a few.

Additionally, backend developers need to be familiar with configuring and
maintaining databases that store all of the data for a site, such as the content
that gets poured into templates, user accounts, product inventories, and more.
Some common database languages include MySQL, Oracle, and SQL Server.

Backend development is well beyond the scope of this book, but it is impor-
tant to know the sorts of tasks that get taken care of at the server level. You
should be aware that it is possible to get functionality like shopping carts,
mailing lists, and so on as prepackaged solutions from your hosting company
without having to program it from scratch.

AT A G L A N C E

Backend Development
The following technologies are
typically in the domain of the
backend developer:

• Server software (Apache, Microsoft
IIS)

• Web application languages (PHP,
Ruby, Python, JSP, ASP.NET)

• Database software (MySQL, Oracle,
SQL Server)

Full-Stack Developers and Unicorns
When looking for a job in web development, you will frequently see posts looking for
“full-stack” developers. That means a person who is fluent in both frontend (HTML,
CSS, JavaScript) and backend (server applications, databases) languages.

There is a rare breed of web designer who can handle all of the tasks mentioned
earlier—from content strategy to UX to frontend development to what happens on
the server. These folks are known in the biz as “unicorns.” I’ve met a few!

Part I. Getting Started

It Takes a Village (Website Creation Roles)

12

Other Roles
Not surprisingly, there are a myriad of other roles that contribute to the cre-
ation and maintenance of a site. Here are a few common roles that fall just
outside the moniker “web design.”

Product manager

The product manager of a website or application guides its design and
development in a way that meets business goals. This member of the
team must have a thorough understanding of the target market as well
as the processes involved in the creation of the site itself. Product manag-
ers develop the overall strategy for the site from a marketing perspective,
including how and when it gets released.

Project manager

The project manager coordinates the designers, developers, and everyone
else who is working on the site. They manage things like timelines, devel-
opment approaches, deliverables, and so on. The project manager works
with the product manager and other product owners to make sure that
the project gets done on time and on budget.

SEO specialist

A website or application isn’t much good if nobody knows it exists, so
it is crucial that a site be easily found by search engines. Search Engine
Optimization (SEO) is a discipline focused on tweaking the site structure
and code in a way that increases the chances it will be highly ranked in
search results. There may be an SEO specialist on the in-house team, or
a company may choose to hire an outside SEO firm. SEO is sometimes
perceived as a dark art, but there are many ways to improve findability
that are not underhanded. In fact, the number one technique for improv-
ing SEO is simply having good content with savvy HTML markup.

Multimedia producers

One of the cool things about the web is that you can add multimedia ele-
ments to a site, including sound, video, animation, and even interactive
games. Creating multimedia elements is generally best left to artists and
technicians in those fields, although they may be part of the web team if
video, animation, or interactivity are core to the site’s mission.

That concludes our stroll through the virtual village of workers involved
in the creation of a website. The larger the site, the more likely each team
member will have a narrow specialization and job titles like “UX Lead for
Error Messages.” More likely, everybody on the team will possess a spec-
trum of skills, and the lines between disciplines will blur. For example, I do
Interaction and User Interface design, graphic design, HTML, and CSS, but
I do not write JavaScript, work on the server, or get involved with content
organization. In this book, I aim to give you a foundation in the frontend
technologies that will prepare you for a number of roles.

1. Getting Started in Web Design

It Takes a Village (Website Creation Roles)

13

GEARING UP FOR WEB DESIGN

It should come as no surprise that professional web designers require a fair
amount of gear, both hardware and software. One question I’m frequently
asked is, “What do I need to buy?” I can’t tell you specifically what to buy, but
I will provide an overview of the typical tools of the trade.

Equipment
For a comfortable web development environment, I recommend the follow-
ing equipment:

A solid, up-to-date computer

Macintosh, Windows, or Linux is fine, so use whatever you have and are
comfortable with. Creative departments in professional web development
companies tend to be Mac-based. For backend work, Linux and Windows
are popular. Although it is nice to have a super-fast machine, the files that
make up web pages are very small and tend not to be too taxing on com-
puters. Unless you’re getting into sound and video editing, don’t worry if
your current setup is not the very latest and greatest.

A large monitor

Although not a requirement, a large monitor makes life easier. The more
monitor real estate you have, the more windows and control panels you
can have open at the same time. You can also see more of your page to
make design decisions. If you’re using a large monitor, just make sure you
design for users with smaller monitors and devices in mind.

(Soft) Skills Every Web Designer Needs
We’ve focused on quite a few technical skills that will be helpful
in building websites. I would like to mention a few more—often
overlooked—skills that are just as critical to your success.

Excellent communication skills

In your work, you will need to communicate in person,
on the phone, in email, and in text messaging tools with
clients, team members, and superiors. Be clear, proactive,
and straightforward with what you have to say. Good
communication requires not only that you express yourself
clearly, but also that you be a good listener. Make sure that
you understand issues being discussed, and don’t be afraid
to ask for clarification if you don’t.

Flexibility

Be able to change direction quickly because not only does
web technology change quickly, but you will no doubt be
thrown curveballs in your day-to-day work as well. For

example, you may arrive at work one day to find that the
client has changed your priorities completely. You might
find that they’ve cancelled your project entirely. You might
be asked to learn new skills and shift positions in the team.
Staying adaptable is the key to survival.

Critical thinking and good judgment

Problem-solving is central to all of the disciplines related to
web design, so you need to be able to use critical thinking
skills to come up with solutions and always employ basic
common sense.

A good attitude

Creating sites means being part of a team, even if you work
at home as a freelancer. Be mindful that the attitude with
which you approach your work is contagious, so strive to be a
positive and friendly team member.

Part I. Getting Started

Gearing Up for Web Design

14

A second computer for testing

Many designers and developers find it useful to have a test computer
running a different platform than the computer they use for development
(i.e., if you design on a Mac, test on a PC). Because browsers work differ-
ently on Macs than on Windows machines, it’s critical to test your pages
in as many environments as possible, and particularly on the current
Windows operating system. If you are a hobbyist web designer working
at home, you could check your pages on a friend’s machine. Mac users
should check out the “Run Windows on Your Mac” sidebar.

Mobile devices for testing

The web has gone mobile! That means it is absolutely critical that you
test the appearance and performance of your site on browsers on smart-
phones and tablet devices. Device testing is discussed in Chapter 17,
Responsive Web Design.

A scanner and/or camera

If you anticipate making your own images and textures, you’ll need some
tools for creating them.

Web Production Software
There’s no shortage of software available for creating web pages. In the early
days, we just made do with tools originally designed for print. Today, there are
wonderful tools created specifically with web design in mind that make the
process more efficient. It is a delicate business listing software in a book such
as this because a) there are so many programs, b) everyone has their personal
favorite, and c) new tools come along so rapidly that there are surely newer,
cooler options that you have access to that didn’t exist as I wrote this.

Run Windows on Your Mac
If you have a Macintosh computer with an Intel chip running macOS (Leopard or
later), you don’t need a separate computer to test in a Windows environment.
It is now possible to run Windows right on your Mac using the free Boot Camp
application, which allows you to switch to Windows on reboot.

There are several other VM (Virtual Machine) products for macOS that allow you to
toggle between Mac and Windows, including these:

• VMFusion (www.vmware.com/fusion) is a commercial product with a free trial you
can download.

• Parallels Desktop for Mac (www.parallels.com) is also a commercial product with
a free trial.

• Oracle VirtualBox (virtualbox.org) is a free program that allows you to run a
number of guest operating systems, including Windows and several flavors of Unix.

All VM products require that you purchase a copy of Microsoft Windows, but it sure
beats buying a whole machine.

NOTE

To do the exercises in this book, all you’ll
need is the text editor that came with
your operating system and free image
creation software. There is no need to
purchase anything to follow along.

1. Getting Started in Web Design

Gearing Up for Web Design

15

That said, here is a general overview of the types of software that comprise
the tools of our trade, along with a few specific mentions of the most popular
in each class.

Coding tools
Although you can get by with the simple text editors that come with your
computer, a dedicated code editor makes the task of writing HTML, CSS, and
JavaScript much easier. Code editors understand the syntax of the code you
write, so they can do things for you like color coding, error detection, and
automatically finishing simple tasks like closing HTML tags. Some provide
page previews so you can view the results of your code as you work.

FIGURE 1-6 shows how an HTML document looks in the Sublime Text editor.
Here are just a few of the better-known code editors for web production that
are worth exploring:

• Sublime Text (sublimetext.com)

• Atom (free from GitHub; atom.io)

• Brackets (free from Adobe; brackets.io)

• CodeKit (codekitapp.com; Mac only)

• Adobe Dreamweaver (www.adobe.com/products/dreamweaver.html)

• Coda (panic.com/coda/)

• Microsoft Visual Studio (visualstudio.com)

FIGURE 1-6. Sublime Text is one example of a dedicated code editor.

Part I. Getting Started

Gearing Up for Web Design

16

User interface and layout tools
There is a new breed of interface design tools made specifically for websites
and other applications. Because they have been designed from scratch with
interface design in mind, they seem to anticipate a web designer’s every need.
Interface design tools make it easy to design multiple layouts (such as layouts
at various screen sizes) as well as export images and code for use in produc-
tion. Some allow basic interactivity such as clicks and swipes, so your mock-
ups can be shared online and used for basic interface testing.

Sketch (sketchapp.com, Mac only), shown in FIGURE 1-7, is extremely popular
at the time of this writing. Other options include the following:

• Affinity Designer (affinity.serif.com/en-us/designer/)

• Adobe XD (www.adobe.com/products/xd.html)

• Figma (figma.com)

• UXPin (uxpin.com)

FIGURE 1-7. Sketch (Mac only) is an example of an interface design tool.

Web graphic creation tools
It is certainly possible to create all of the images you need for a site by using
one of the interface design tools just listed. There are also programs that focus
solely on image creation that can export files in web-appropriate formats.
For professional designers, the Adobe Creative Cloud (adobe.com) suite of
tools, which includes Photoshop (FIGURE 1-8), Illustrator, and other high-end
design tools, is worth the investment.

If the Adobe monthly subscription fee is out of reach, you can try lower-cost
alternatives that provide many of the same features. The number of graphics
tools out there is dizzying, so I’m gathering just a few here:

1. Getting Started in Web Design

Gearing Up for Web Design

17

• GIMP (free, open source; gimp.org)

• Corel PaintShop Pro (for photo editing; paintshoppro.com; Windows only)

• Corel Draw (for vector drawing; coreldraw.com; Windows only)

• Pixelmator (pixelmator.com; Mac only)

The following image editors work right in your browser, without the need to
download a program, although you do need to pay for an account:

• SumoPaint (sumopaint.com)

• Pixlr (pixlr.com)

FIGURE 1-8. Adobe Photoshop is the professional standard for image editing.

A variety of browsers
One of the biggest challenges for web designers is that our sites may look and
behave differently from browser to browser. For this reason, it is critical that
we test our designs early and often on the widest range of browsers possible.
These are the browsers designers and developers keep around for testing:

• Chrome (google.com/chrome)

• Firefox (www.mozilla.org)

• MS Edge (www.microsoft.com/en-us/windows/microsoft-edge; Windows only)

• Internet Explorer 9–11 (www.microsoft.com; search “Internet Explorer”;
Windows only)

• Safari (support.apple.com/downloads/#safari; Mac only)

• Opera (opera.com)

Part I. Getting Started

Gearing Up for Web Design

18

You will also need to test on a variety of smartphone browsers including iOS
Safari, Android browsers, and third-party mobile browsers. We will discuss
mobile testing further in Chapter 17.

File management and transfer tools
Web design and development involves a lot of moving files around, particu-
larly from the computer where you do your work to the server computer that
hosts the site. To move files across the internet, you use an FTP (short for File
Transfer Protocol) program. You will find that many hosting services offer
their own FTP tools for uploading your files to their servers. Many of the code
editors listed earlier also include built-in FTP functionality. Or, you can use
a standalone FTP program, such as one of these:

• Filezilla (filezilla-project.org; free, all platforms)

• Cyberduck (cyberduck.io; Mac and Windows)

• WinSCP (winscp.net/eng/index.php; free, Windows only)

• Transmit (panic.com/transmit/; Mac only)

You may also find it useful to have a terminal application (command-line
tool) that allows you to type Unix commands for setting file permissions,
moving or copying files and directories, or managing the server software.
Command-line tools, which have a number of uses in web design and devel-
opment workflow, are discussed in more detail in Chapter 20, Modern Web
Development Tools:

• Terminal (installed with macOS; shown in FIGURE 1-9)

• Cygwin (cygwin.com; Linux emulator for Windows that includes a
command-line tool)

FIGURE 1-9. The Terminal command-line tool for macOS.

1. Getting Started in Web Design

Gearing Up for Web Design

19

WHAT YOU’VE LEARNED

I hope that this chapter has given you an overview of the many roles and
responsibilities that fall under the umbrella of “web design.” I also hope that
you come away realizing that you don’t need to learn everything. And even if
you want to learn everything eventually, you don’t need to learn it all at once.
So relax, and don’t worry. The other good news is that, while many profes-
sional tools exist, it is possible to create a basic website and get it up and run-
ning without spending much money by using freely available or inexpensive
tools and your existing computer setup.

As you’ll soon see, it’s easy to get started making web pages—you will be able
to create simple pages by the time you’re done reading this book. From there,
you can continue adding to your bag of tricks and find your particular niche
in web design. In the meantime, try answering the questions in EXERCISE 1-1.

TEST YOURSELF

Each chapter in this book ends with a few questions that you can answer to
see if you picked up the important bits of information. Answers appear in
Appendix A.

1. Match these web professionals with the final product they might be
responsible for producing:

a. Graphic designer _____ HTML and CSS documents

b. Production department _____ PHP scripts

c. User experience designer _____ “Look and feel” deliverables

d. Backend programmer _____ Storyboards

2. What does the W3C do?

3. Match the web technology with its appropriate task:

a. HTML _____ Checks a form field for a valid entry

b. CSS _____ Creates a custom server-side web application

c. JavaScript _____ Identifies text as a second-level heading

d. Ruby _____ Makes all second-level headings blue

4. What is the difference between frontend and backend web development?

5. What does an FTP tool do and how do you get one?

EXERCISE 1-1.
Taking stock

Now that you’re taking that first step in
learning web design, it might be a good
time to take stock of your assets and
goals. Using the lists in this chapter as a
general guide, try jotting down answers
to the following questions:

• What are your web design goals? To
become a professional web designer?
To make personal websites only?

• Which aspects of web design interest
you the most?

• What current skills do you have that
will be useful in creating web pages?

• Which skills will you need to brush
up on?

• Which hardware and software tools
do you already have for web design?

• Which tools do you need to buy?
Which tools would you like to buy
eventually?

Part I. Getting Started

What You’ve Learned

20

I got started in web design in early 1993—pretty close to the start of the web
itself. That’s a quarter of a century ago (gasp!), but I still distinctly remember
the first time I looked at a web page. It was difficult to tell where the informa-
tion was coming from and how it all worked.

This chapter sorts out the pieces and introduces some basic terminology.
We’ll start with the big picture and work down to specifics.

THE INTERNET VERSUS THE WEB

No, it’s not a battle to the death, just an opportunity to point out the distinction
between two words that are increasingly being used interchangeably.

The internet is an international network of connected computers. No com-
pany owns the internet; it is a cooperative effort governed by a system of
standards and rules. The purpose of connecting computers together, of
course, is to share information. There are many ways information can be
passed between computers, including email (POP3/IMAP/SMTP), file trans-
fer (FTP), secure shell (SSH), and many more specialized modes upon which
the internet is built. These standardized methods for transferring data or
documents over a network are known as protocols.

The web (originally called the World Wide Web, thus the “www” in site
addresses) is just one of the ways information can be shared over the internet.
It is unique in that it allows documents to be linked to one another via hyper-
text links—thus forming a huge “web” of connected information. The web
uses a protocol called HTTP (HyperText Transfer Protocol). That acronym
should look familiar because it is the first four letters of nearly all website
addresses, as we’ll discuss in an upcoming section.

The web is a subset of
the internet. It is just one
of many ways information
can be transferred over
networked computers.

2
CHAPTER

HOW THE WEB
WORKS

IN THIS CHAPTER

An explanation of the web as it
relates to the internet

The role of the server

The role of the browser

URLs and their components

The anatomy of a web page

21

T E R M I N O LO GY

Open Source
Open source software is developed
as a collaborative effort with the
intent to make its source code
available to other programmers for
use and modification. Open source
programs are usually free to use.

A Brief History of the Web
The web was born in a particle physics laboratory (CERN) in Geneva, Switzerland, in
1989. There a computer specialist named Tim Berners-Lee first proposed a system of
information management that used a “hypertext” process to link related documents
over a network. He and his partner, Robert Cailliau, created a prototype and released
it for review. For the first several years, web pages were text-only. It’s difficult to
believe that in 1992, the world had only about 50 web servers, total.

The real boost to the web’s popularity came in 1992 when the first graphical browser
(NCSA Mosaic) was introduced, and the web broke out of the realm of scientific
research into mass media. The ongoing development of web technologies is overseen
by the World Wide Web Consortium (W3C).

If you want to dig deeper into the web’s history, check out the W3C’s History Archives
at www.w3.org/History.html.

FUN FACT: If you look at that page, you’ll see a July 1993 entry for the first “WWW
Wizards Workshop.” Although I did not attend that meeting, I did design the
commemorative t-shirt!

SERVING UP YOUR INFORMATION

Let’s talk more about the computers that make up the internet. Because they
“serve up” documents upon request, these computers are known as servers.
More accurately, the server is the software (not the computer itself) that
allows the computer to communicate with other computers; however, it is
common to use the word “server” to refer to the computer as well. The role of
server software is to wait for a request for information, and then retrieve and
send that information back as quickly as possible.

There’s nothing special about the computers themselves…picture anything
from a high-powered Unix machine to a humble personal computer. It’s the
server software that makes it all happen. In order for a computer to be part
of the web, it must be running special web server software that allows it to
handle HyperText Transfer Protocol transactions. Web servers are also called
HTTP servers.

There are many server software options out there, but the two most popu-
lar are Apache (open source software) and Microsoft Internet Information
Services (IIS). Apache is freely available for Unix-based computers and comes
installed on Macs running macOS. There is a Windows version as well.
Microsoft IIS is part of Microsoft’s family of server solutions.

Every computer and device (router, smartphone, car, etc.) connected to the
internet is assigned a unique numeric IP address (“IP” stands for “Internet
Protocol”). For example, as I write this, the computer that hosts oreilly.com has
the IP address 199.27.145.64. All those numbers can be dizzying, so fortu-
nately, the Domain Name System (DNS) was developed to allow us to refer to

Part I. Getting Started

Serving Up Your Information

22

that server by its domain name, “oreilly.com”, as well. The numeric IP address
is useful for computer software, while the domain name is more accessible
to humans. Matching the text domain names to their respective numeric IP
addresses is the job of a separate DNS server. If you think of an IP address as
a telephone number, the DNS server would be the phonebook.

It is possible to configure your web server so that more than one domain
name is mapped to a single IP address, allowing several sites to share a single
server.

A WORD ABOUT BROWSERS

We now know that the server does the servin’, but what about the other half
of the equation? The software that does the requesting is called the client.
People use desktop browsers, mobile browsers, and other assistive technolo-
gies (such as screen readers) as clients to access documents on the web. The
server returns the documents for the browser (also referred to as the user
agent in technical circles) to display.

The requests and responses are handled via the HTTP protocol, mentioned
earlier. Although we’ve been talking about “documents,” HTTP can be used
to transfer images, movies, audio files, data, scripts, and all the other web
resources that commonly make up websites and applications.

It is common to think of a browser as a window on a computer monitor
with a web page displayed in it. These are known as graphical browsers or
desktop browsers and for a long time, they were the only web-viewing game
in town. The most popular desktop browsers as of this writing include Edge
and Internet Explorer for Windows, Chrome, Firefox, and Safari, with Opera
and Vivaldi bringing up the rear.

These days, however, more than half of web traffic comes from mobile brows-
ers on smartphones and tablets such as Safari on iOS, Android and Chrome
browsers on Android devices, Opera Mini, and a myriad of other default and
installable mobile browsers (see en.wikipedia.org/wiki/Mobile_browser for a
complete list). Navigating the web on a touch screen is the new normal.

It is also important to keep alternative web experiences in mind. Users with
impaired sight may be listening to a web page read by a screen reader (or
simply make their text extremely large). Users with limited mobility may use
assistive technology such as joysticks or voice commands to access links and
enter content. The sites we build must be accessible and usable for all users,
regardless of their browsing experiences.

The web is also finding its way onto smart TVs and gaming systems, where
users access our pages with TV remotes or Xbox controllers. You never know
where the web will pop up next!

T E R M I N O LO GY

Intranets and Extranets
When you think of a website, you
generally assume that it is accessible
to anyone surfing the web. However,
many organizations take advantage
of the awesome information sharing
and gathering power of websites to
exchange information just within
their own network. These special
web-based networks are called
intranets. They are created and
function like ordinary websites, but
they use special security devices
(called firewalls) that prevent the
outside world from seeing them.
Intranets have lots of uses, such as
sharing human resource information
or providing access to inventory
databases.

An extranet is like an intranet, but it
allows access to select users outside
of the organization. For example, a
manufacturing company may provide
its customers with passwords that
allow them to check the status of
their orders in the company’s orders
database. Passwords determine
which slice of the company’s
information is accessible.

T E R M I N O LO GY

Server-Side and
Client-Side
Often in web design, you’ll hear
references to “client-side” or
“server-side” applications. These
terms are used to indicate which
machine is doing the processing.
Client-side applications run on the
user’s machine (also referred to
as the frontend), while server-side
applications and functions use
the processing power of the server
computer (the backend).

2. How the Web Works

A Word About Browsers

23

The reality is that pages may look and perform differently from browser to
browser. This is due to varying support for web technologies, varying device
capabilities, and the users’ ability to set their own browsing preferences. It is
the most challenging aspect of designing and developing for our medium.

WEB PAGE ADDRESSES (URLS)

Every page and resource on the web has its own special address called a URL,
which stands for Uniform Resource Locator. It’s nearly impossible to get
through a day without seeing a URL (pronounced “U-R-L,” not “erl”) plas-
tered on the side of a bus, printed on a business card, or broadcast on a televi-
sion commercial. Web addresses are fully integrated into modern vernacular.

Some URLs are short and sweet. Others may look like crazy strings of char-
acters separated by dots (periods) and slashes, but each part has a specific
purpose. Let’s pick one apart.

The Parts of a URL
A complete URL is generally made up of three components: the protocol, the
site name, and the absolute path to the document or resource, as shown in
FIGURE 2-1.

Browser Rendering Engines
The program that is responsible for converting HTML and CSS
into what you see rendered on the screen is called a rendering
engine (also browser engine or layout engine). Browsers that
you use on desktop computers and mobile devices are made
up of rendering engines as well as other code used for their
own user interfaces and functionality. Although I talk a lot about
which browsers support particular functions in this book, I’m

technically referring to the browser’s rendering engine. Various
browsers often share a rendering engine; for example, the
Blink engine powers Chrome, Opera, and a variety of Android
browsers. TABLE 2-1 lists the rendering engines used by the
most popular web browsers today. For more information, search
Wikipedia.com for “Comparison of web browser engines” and
“Comparison of web browsers.”

TABLE 2-1. Current browsers and their rendering engines

Browser Rendering engine

Chrome 28+ Blink (forked from WebKit)

Firefox (all) Gecko (except Firefox for iOS, which uses WebKit)

Safari and Safari iOS (all) WebKit

Internet Explorer 4–11 Trident

MS Edge (all) EdgeHTML (forked from Trident)

Opera 15+ Blink (forked from WebKit)

Part I. Getting Started

Web Page Addresses (URLs)

24

http:// www.example.com /2018/samples/first.html

Hostname Domain name

Protocol1 Name of site2 Absolute path3

Directory path Document

FIGURE 2-1. The parts of a URL

1 http://

The first thing the URL does is to define the protocol that will be used for
that particular transaction. The letters “HTTP” let the server know to use
HyperText Transfer Protocol, or get into “web mode.” You may also see a
URL begin with https://, which I explain in the “HTTPS, The Secure Web
Protocol” sidebar.

2 www.example.com

The next portion of the URL identifies the website by its domain name.
In this example, the domain name is “example.com.” The “www.” part at
the beginning is the particular hostname at that domain. The hostname
“www” has become a convention, but is not a rule. In fact, sometimes
the hostname may be omitted. There can be more than one website at a
domain (called subdomains). For example, there might also be “develop-
ment.example.com,” “clients.example.com,” and so on.

3 /2018/samples/first.html

This is the absolute path through directories on the server to the request-
ed HTML document, first.html. The words separated by slashes are the
directory names, starting with the root directory of the host (as indicated
by the initial /). Because the internet originally comprised computers run-
ning the Unix operating system, our current way of doing things still fol-
lows Unix rules and conventions, hence the / separating directory names.

To sum it up, the URL in FIGURE 2-1 says it would like to use the HTTP proto-
col to connect to a web server on the internet called “www.example.com” and
to request the document first.html, located in the samples directory, which is
in the 2018 directory.

Simplified URLs
Obviously, not every URL you see is so lengthy. To get to O’Reilly’s site, you’d
expect to type oreilly.com instead of http://www.oreilly.com/index.html.
Here’s why that works.

URL Versus URI
The W3C and the development
community are moving away from
the term URL (Uniform Resource
Locator) and toward the more generic
and technically accurate URI (Uniform
Resource Identifier). On the street and
even on the job, however, you’re still
likely to hear URL.

Here’s the skinny on URL versus
URI: a URL is one type of a URI that
identifies the resource by its location
(the L in URL) on the network. The
other type of URI is a URN that
identifies the resource by name or
namespace (the N in URN).

Because it is more familiar, I will be
sticking with URL throughout this
book. Just know that URLs are a
subset of URIs, and the terms are
often used interchangeably.

If you like to geek out on this kind of
thing, I refer you to the URI Wikipedia
entry: en.wikipedia.org/wiki/
Uniform_Resource_Identifier.

2. How the Web Works

Web Page Addresses (URLs)

25

Skipping the protocol
Because nearly all web pages use the HyperText Transfer Protocol, the http://
part is often just implied. This is the case when site names are advertised in
print or on TV, as a way to keep the URL easy to remember.

Additionally, browsers are programmed to add http:// automatically as a
convenience to save you some keystrokes. It may seem like you’re leaving it
out, but it is being sent to the server behind the scenes.

When we begin using URLs to create hyperlinks in HTML documents in
Chapter 6, Adding Links, you’ll learn that it is necessary to include the
protocol when making a link to a web page on another server.

Pointing to default files
Many addresses do not include a filename, but simply point to a directory,
like these:

http://www.oreilly.com
http://www.jendesign.com/resume/

When a server receives a request for a directory name rather than a specific
file, it looks in that directory for a default document, typically named index.
html. So when someone types the previous URLs into his browser, what he’ll
actually see is this:

http://www.oreilly.com/index.html
http://www.jendesign.com/resume/index.html

The name of the default file (also referred to as the index file) may vary, and
depends on how the server is configured. In these examples, it is named index.
html, but some servers use the filename default.htm. If your site uses server-
side programming to generate pages, the index file might be named index.php
or Default.aspx. Just check with your server administrator or the tech support
department at your hosting service to make sure you give your default file
the proper name.

Another thing to notice is that in the first example, the original URL did not
have a trailing slash to indicate it was a directory. If the slash is omitted, the
server checks to see if the request is a file or a directory. If it is a directory,
the server asks the browser to send the request again with a slash. In the end,
the slash is included for directories, even if it isn’t included the first time it is
entered (see Performance Tip).

The index file is also useful for security. Some servers (depending on their
configuration) display the contents of the directory if the default file is not
found. FIGURE 2-2 shows how the documents in the housepics directory are
exposed as the result of a missing default file. One way to prevent people
from snooping around in your files is to be sure there is an index file in every
directory. Your server administrator may also add other protections to prevent
your directories from displaying in the browser.

P E R FO R M A N C E T I P

If you want to minimize round-trips
to the server, include slashes at the
end of directory names in URLs in
your links.

HTTPS, the Secure
Web Protocol
If you look at the address bar while
shopping online or using a banking
site, you’ll notice that they use the
HTTPS protocol. HTTPS, where “S”
stands for “secure,” is a modification
of HTTP that encrypts form
information when it is sent between
the user’s client and the server. Any
web page that has form fields that
accept text (such as a search bar or a
login) should use HTTPS.

As of this writing, around 60% of
pages (and growing!) use HTTPS, and
for good reason. Not only is it a good
idea to keep your user’s data secure
in transit, but Google is pushing along
the transition to HTTPS with some
serious incentives as well. If you have
a site that accepts text input and you
don’t use HTTPS, your site won’t rise
as high in the Google search results.
In addition, in Chrome, these sites are
marked with “Not Secure” in the top
bar of the browser.

HTTPS works in tandem with another
protocol, SSL (for Secure Socket
Layer), which needs to be enabled
on the server for secure transactions
to work. Hosting companies have
options for enabling SSL, often for free.

Keep in mind that HTTPS protects
form data as it is sent to the server,
but doesn’t do anything to make your
site “secure” and safe from hackers.

Part I. Getting Started

Web Page Addresses (URLs)

26

THE ANATOMY OF A WEB PAGE

We’re all familiar with what web pages look like in the browser window, but
what’s happening “under the hood”?

At the top of FIGURE 2-3, you see a minimal web page as it appears in a
graphical browser. Although you see it as one coherent page, it is actually
assembled from four separate files: an HTML document (index.html), a style
sheet (kitchen.css), and two graphics (foods.png and spoon.png). The HTML
document is running the show.

HTML Documents
You may be as surprised as I was to learn that the graphically rich and inter-
active pages we see on the web are generated by simple, text-only documents.
The text file behind the scenes is referred to as the source document.

Take a look at index.html, the source document for the Jen’s Kitchen web
page. You can see that it contains the text content of the page plus special
tags (indicated with angle brackets, < and >) that describe each element on
the page.

Providing the URL for a directory (rather
than a specific filename) prompts the server to
look for a default file, typically called index.html.

index.html

Some servers are configured to return a listing of the
contents of that directory if the default file is not found.

FIGURE 2-2. Some servers display the contents of the directory if an index file is not
found.

2. How the Web Works

The Anatomy of a Web Page

27

The web page shown in this
browser window consists of four
separate files:

• An HTML text document

• A style sheet

• Two images

Tags in the HTML source
document give the browsers
instructions for how the text is
structured and where the images
should be placed.

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8">
 <title>Jen's Kitchen</title>
 <link rel="stylesheet" href="kitchen.css" type="text/css">
</head>

<body>
<h1> Jen’s Kitchen</h1>

<p>If you love to read about cooking and eating, would like to learn about some of the best
restaurants in the world, or just want a few choice recipes to add to your collection, this is the site
for you!</p>

<p> Your pal, Jen at Jen's Kitchen</p>

<hr>
<small>Copyright 2018, Jennifer Robbins</small>
</body>
</html>

body { font: normal 1em Verdana; width: 80%; margin: 1em auto; }

h1 { font: italic 3em Georgia; color: rgb(23, 109, 109);
 margin: 1em 0 1em; }

img { margin: 0 20px 0 0; }

h1 img { margin-bottom: -20px; }

small { color: #666666; }

index.html

kitchen.css
foods.png

spoon.png

FIGURE 2-3. The source file, style sheet, and images that make up a simple web page.

Part I. Getting Started

Web Page Addresses (URLs)

28

Adding descriptive tags to a text document is known as “marking up” the
document. Web pages use a markup language called HyperText Markup
Language, or HTML for short, which was created especially for documents
with hypertext links. HTML defines dozens of text elements that make up
documents such as headings, paragraphs, emphasized text, and of course,
links. There are also elements that add information about the document
(such as its title), media such as images and videos, and widgets for form
inputs, just to name a few.

You can view the source for any web page. EXERCISE 2-1 gives you some
prompts and pointers.

The version of HTML we use today is HTML5. There have been several ver-
sions of HTML since its birth in 1989, and a few that are still in use today.
There is a complete history of HTML, all its versions, and an overview of
what makes HTML5 unique in Appendix D, From HTML+ to HTML5.

EXERCISE 2-1. View source

You can see the HTML file for any web page by viewing its source in a desktop browser.
Most modern browsers keep the View Source function with the developer tools and
typically open the source document in a separate window or in a developer’s panel at the
bottom of the current window.

Here’s where to find the View Source function on the major desktop browsers:

Safari: Develop → Show → Page Source
Chrome: View → Developer → View Source
Firefox: Tools → Web Developer → Page Source
MS Edge: Right-click on the page and select View Source. If you do not see that option

in the context menu, you may need to turn it on in the Developer Settings.
Open a new browser window and type about:flags in the address bar.
Under “Developer settings,” check “Show View source” and “Inspect element”
in the context menu. Now when you go to a web page, you can right-click on
the page and access the View Source function. You may also use the Ctrl+U
keyboard shortcut or F12 key.

1. With the browser of your choice, enter this URL into your browser:

www.learningwebdesign.com/5e/kitchen.html

You should see the Jen’s Kitchen web page from FIGURE 2-3.

2. Follow the directions for your browser listed above to view the source HTML document
for the Jen’s Kitchen page. It should be the same as shown in the figure.

3. To view a page that is a little more complicated, take a look at the source for the
learningwebdesign.com home page.

4. The source for most sites is considerably more complicated. View the source of
oreilly.com. It’s got style sheets, scripts, inline SVG graphics…the works! Don’t worry
if you don’t understand what’s going on. Much of it will look more familiar by the time
you are done with this book.

WARNING

Keep in mind that while learning from
others’ work is fine, stealing other peo-
ple’s code is poor form (or even illegal).
If you want to use code as you see it, ask
for permission and always give credit to
those who did the work.

2. How the Web Works

The Anatomy of a Web Page

29

A Quick Introduction to HTML Markup
You’ll be learning the nitty-gritty of markup in Part II, so I don’t want to bog
you down with too much detail right now, but there are a few things I’d like
to point out about how HTML works and how browsers interpret it.

Read through the HTML document in FIGURE 2-3 and compare it to the
browser results. It’s easy to see how the elements marked up with HTML tags
in the source document correspond to what displays in the browser window.

First, you’ll notice that the text within brackets (for example, <body> and
) does not display in the final page. The browser displays only what’s
between the tags—the content of the element. The markup is hidden. The tag
provides the name of the HTML element—usually an abbreviation such as
“h1” for “heading level 1,” or “em” for “emphasized text.”

Second, you’ll see that most of the HTML tags appear in pairs surrounding
the content of the element. In our HTML document, <h1> indicates that the
following text should be a first-level heading; </h1> indicates the end of the
heading. Some elements, called empty elements, do not have content. In our
sample, the <hr> tag indicates an empty element that tells the browser to
“insert a horizontal rule here” as a thematic divider.

Because I was unfamiliar with computer programming when I first began
writing HTML, it helped me to think of the tags and text as “beads on a
string” that the browser interprets one by one, in sequence. For example,
when the browser encounters an open bracket (<), it assumes all of the fol-
lowing characters are part of the markup until it finds the closing bracket
(>). Similarly, it assumes all of the content following an opening <h1> tag
is a heading until it encounters the closing </h1> tag. This is the manner
in which the browser parses the HTML document. Understanding the
browser’s method can be helpful when troubleshooting a misbehaving
HTML document.

Where Are the Pictures?
Obviously, there are no pictures in the HTML file itself, so how do they get
there when you view the final page? You can see in FIGURE 2-3 that each
image is a separate file. The images are placed in the flow of the text with the
HTML image element (img), which tells the browser where to find the graphic
(its URL). When the browser sees the img element, it makes another request to
the server for the image file, and then places it in the content flow.

The browser also sends requests to the server for style sheets (like kitchen.
css), JavaScript files (.js), and other embedded media like audio and videos.
The browser software (or more specifically, its rendering engine) brings the
separate pieces together into the final page.

Part I. Getting Started

The Anatomy of a Web Page

30

The assembly of the page generally happens in an instant, so it appears as
though the whole page loads all at once. Over slow connections or if the
page includes huge graphics or media files, the assembly process may be
more apparent as images lag behind the text. The page may even need to be
redrawn as new images, fonts, and style sheets arrive (although you can con-
struct your pages in such a way that prevents this from happening).

Adding a Little Style
I want to direct your attention to one last key ingredient of our minimal page.
Near the top of the HTML document there is a link element that points to
the style sheet document kitchen.css. That style sheet includes a few lines
of instructions for how the page should look in the browser. These are style
instructions written according to the rules of Cascading Style Sheets (CSS).
CSS allows designers to add visual style instructions (known as the docu-
ment’s presentation) to the marked-up text (the document’s structure, in web
design terminology). In Part III, you’ll get to know the power of Cascading
Style Sheets.

FIGURE 2-4 shows the Jen’s Kitchen page without (top) and with (bottom)
the style instructions. Browsers come equipped with default styles for every
HTML element they support, so if an HTML document lacks custom style
instructions, the browser will use its own. That’s what you see in the screen-
shot on the top. Even just a few style rules can make big improvements to the
appearance of a page.

Adding Behaviors with JavaScript
To make elements on the page do something, you use a scripting language
called JavaScript (see Note). There are no scripts on the Jen’s Kitchen page
because I thought it best to keep things simple this early in the book, but
know that JavaScript is an essential ingredient in modern websites.

Whereas HTML provides the structure and the CSS style sheet alters how
things look, JavaScript adds a behavior component that controls how things
work. Scripts may be standalone files on the server (with the .js suffix) or be
written out right in the document. They may be triggered to run immediately
when the page loads or be triggered by something the user does, like click or
hover on an element or enter something in a form field.

You’ll get a basic introduction to JavaScript in Part IV of this book.

N OT E

JavaScript is not required for the interactivity of links and web forms, which work using
HTML alone.

FIGURE 2-4. The Jen’s Kitchen
page without (top) and with (bottom)
custom style rules.

2. How the Web Works

The Anatomy of a Web Page

31

PUTTING IT ALL TOGETHER

1 To wrap up our introduction to how the web works, let’s trace a typical
stream of events that occurs with every web page that appears on your
screen (FIGURE 2-5). Request a web page by either typing its URL (for
example, http://jenskitchensite.com) directly in the browser or by clicking
a link on a page. The URL contains the information needed to target a
specific document on a specific web server on the internet. In this case, it
points to the default file (index.html) in the top directory.

2 Your browser sends an HTTP request to the server named in the URL
and asks for the specific file. The request also includes information about
what languages the user can read and what types of files the browser
can accept. If the URL specifies a directory (not a file), it is the same as
requesting the default file in that directory.

3 The server looks for the requested file and issues an HTTP response in
the form of an HTTP header. The header includes information about the
file, like the last modified date, the length of the file, and its Content-Type
(for example, an .html file has the content type “text/html”).

a. If the page cannot be found, the server returns an error message. The
message typically says “404 Not Found,” although more hospitable
error messages may be provided. Other error types are possible as
well (see the sidebar “HTTP Status Codes”).

b. If the document is found, the server retrieves the requested file and
returns it to the browser. If the site is dynamic, the server assembles
the page from stored data before returning it to the browser.

4 The browser parses the HTML document. If the page contains images
(indicated by the HTML img element) or other external resources like
scripts or style sheets, the browser contacts the server again to request
each resource specified in the markup.

5 The browser inserts each image in the document flow where indicated by
the img element, applies styles, and runs scripts. And voilà! The assembled
web page is displayed for your viewing pleasure.

I should note that I’ve depicted a traditional and simplified scenario here to
tell you how web pages are put together. These days, it is common for web
pages to be generated from content management systems (CMSs) that keep
content in databases and use templates to assemble the data into pages on the
fly. In that case, in Step 3b, there is a more complicated process of assembling
the file from various parts rather than just handing off an existing file.

HTTP Status Codes
Servers issue status codes in
response to browser requests. The
full list of status codes is quite long
(you can read about them all at
en.wikipedia.org/wiki/List_of_
HTTP_status_codes), but here are a
few common responses:

200 OK

301 Moved Permanently

302 Moved Temporarily

404 Not Found

410 Gone (no longer available)

500 Internal Server Error

Static vs. Dynamic Sites
Static websites consist of HTML files
with fixed content that display the
same information to every visitor. In
other words, each page you see in the
browser is a view of a single HTML file
on the server. This book focuses on
the creation of static web pages as
they are straightforward and the best
starting place for beginners.

By contrast, dynamic websites
are generated with backend
programming such as PHP or ASP.
Each page is generated by the
application on the fly. Dynamic sites
access content and data from a
database, and the final pages may
be customized for each user. For
extremely large sites with hundreds
or thousands of pages, setting up
and maintaining a dynamic site is
considerably less work than creating
and storing every page as a static
HTML document individually.

Part I. Getting Started

Putting It All Together

32

4 The browser parses
the document. If it has images, style
sheets, and scripts, the browser
contacts the server again for each
resource.

5 The page is assembled in the
browser window.

HTTP request

2 The browser sends an HTTP request.

HTTP response

Server

Oops, no file
If the file is not on the

server, it returns an error
message.

Files on Server

index.html

Browser (Client)

1 Type in a URL or click a link
in the browser.

3 The server looks for or
assembles the file and
responds with an HTTP
response.

“I see that you
requested a
directory, so
I’m sending

you the
default file,
index.html.

Here you go.”

foods.png

spoon.png

index.html

kitchen.css

kitchen.css

foods.png

spoon.png

FIGURE 2-5. How browsers display web pages.

Getting Your Pages on the Web
If you would like more information about registering domain names and finding a server to host your site, download the article titled
“Getting Your Pages on the Web” (PDF) at learningwebdesign.com/articles/.

2. How the Web Works

Putting It All Together

33

TEST YOURSELF

Let’s play a round of “Identify That Acronym!” The following are a few basic
web terms mentioned in this chapter. Answers are in Appendix A.

1. HTML ______ a. Home of Mosaic, the first graphical browser

2. W3C ______ b. The location of a web document or resource

3. CERN ______ c. The markup language used to describe web content

4. CSS ______ d. Matches domain names with numeric IP addresses

5. HTTP ______ e. A protocol for file transfer

6. IP ______ f. Protocol for transferring web documents on the internet

7. URL ______ g. The language used to instruct how web content looks

8. NCSA ______ h. Particle physics lab where the web was born

9. DNS ______ i. Internet Protocol

10. FTP ______ j. The organization that monitors web technologies

Part I. Getting Started

Test Yourself

34

35

IN THIS CHAPTER

The web on mobile devices

The benefits of web standards

Progressive enhancement

Responsive Web Design

Accessibility

Site performance

As the web matures and the number of devices we access it from increases
exponentially, our jobs as web designers and developers get significantly
more complicated. Frankly, there’s a lot more going on out there than I can
fit in this book. In the chapters that follow, I will focus on the basic building
blocks of web design—HTML elements, CSS styles, a taste of JavaScript, and
web image production—that will give you a solid foundation for the further
development of your skills.

Before we get to the nuts and bolts, I want to introduce some Big Concepts
that every web designer needs to know. We’ll look at ideas and concerns that
inform our decisions and contribute to the contemporary web environment.
I’ll be referring back to the terminology introduced here frequently.

The heart of the matter is that as web designers, we never know exactly
how the pages we create will be viewed. We don’t know which of the dozens
of browsers might be used, whether it is on a desktop computer or some-
thing more portable, how large the browser window will be, what fonts are
installed, whether functionality such as JavaScript is enabled, how fast the
internet connection is, whether the pages are being read by a screen reader,
and so on. The Big Concepts in this chapter are primarily reactions to and
methods for coping with the inescapable element of the Unknown in our
medium. They include the following:

• The multitude of devices

• Web standards

• Progressive enhancement

• Responsive Web Design

• Accessibility

• Site performance

SOME BIG
CONCEPTS YOU
NEED TO KNOW

3
CHAPTER

Part I. Getting Started

A Multitude of Devices

36

Because we’re just getting started, I will keep the descriptions brief and fairly
non-technical. My goal is that you have a basic understanding of what I
mean by terms like “progressive enhancement” when you encounter them in
lessons later. Many excellent articles and books have been written on each of
these topics and their related production techniques, and I’ll provide pointers
to resources for further reading.

A MULTITUDE OF DEVICES

Until 2007, we could be relatively certain that our users were visiting our
sites while sitting at their desks, looking at a large monitor, using a speedy
internet connection. We had all more or less settled on 960 pixels as a good
width for a web page based on the most common monitor size. Back then,
our biggest concern was dealing with the dozen or so desktop browsers and
jumping through a few extra hoops to support quirky old versions of Internet
Explorer. And we thought we had it rough!

Although you could access web pages and web content on mobile phones
prior to 2007, the introduction of the iPhone and Android smartphones as
well as faster networks heralded a huge shift in how, when, and where we do
our web surfing (particularly in the United States, which lagged behind Asia
and the EU in mobile technology). Since then, we’ve seen the introduction of
phones and tablets of all different dimensions, as well as web browsers on
TVs, gaming systems, and other devices. And the diversity is only going to
increase. I think mobile web design expert Brad Frost sums it up nicely in his
illustrations in FIGURE 3-1.

The challenge of designing for all of these devices goes beyond addressing dif-
fering screen sizes. There is a world of difference between using a site over a
broadband connection and over a slow cell network. Designers need to resist
making assumptions about network speed and context based on the screen
size. Just because it is a small screen doesn’t mean it’s a slow connection or

FIGURE 3-1. Brad Frost sums up the reality of device diversity nicely (bradfrostweb.com).

3. Some Big Concepts You Need to Know

A Multitude of Devices

37

that the person is in a hurry. It’s not uncommon to leisurely browse the web
on a smartphone while sitting on the couch at home with a solid WiFi con-
nection. And iPads with larger, high-resolution displays may be accessing the
internet on pokey 3G connections. In other words, it’s complicated!

For a lot of sites today, more people access the web via their mobile devices
than on a desktop computer. Already, a significant portion of Americans use
their mobile phones as their only access to the internet. That means it is criti-
cal to get the design and functionality right. We’ve made huge strides in serv-
ing a pleasing experience to users with handheld devices, and the technology
for targeting their needs continues to head in the right direction.

What I want you to learn here is that the way you see your design as you’re
working on it on your nice desktop machine is not how it will be experienced
by everyone. Some will see it much smaller. Some will see it load painfully
slowly. Some may be looking at it on a TV across the room. All web design
professionals should keep this fact in mind.

For Further Reading
• Mobile First by Luke Wroblewski (A Book Apart). Luke was way ahead of

the curve in insisting that sites work well on mobile devices, and he shares
his perspective in this little book, which is jam-packed with ideas.

Resist making
assumptions about
network speed and
context based on the
screen size.

Mobile Web?
You may hear people use the term “mobile web,” but the truth is (as Stephen Hay
put it in a tweet in 2011; see FIGURE 3-2), there is no Mobile Web any more than
there is a Desktop Web, or a Tablet Web, or so on. There is just The Web, and it can
be accessed from all manner of devices. As of this writing, “mobile web” is used as
sort of a catchall term to describe our efforts to adapt our desktop design skills to
accommodate a much wider variety of use cases. And, as we are finding out, there is
more than one way to crack that nut.

FIGURE 3-2. Stephen Hay’s tweet from January 2011. Read his follow-up
article at www.the-haystack.com/2011/01/07/there-is-no-mobile-web.

Part I. Getting Started

Sticking with the Standards

38

STICKING WITH THE STANDARDS

So how do we deal with this diversity? A good start is to follow the standards
documented by the World Wide Web Consortium (W3C). Sticking with web
standards is your primary tool for ensuring your site is consistent on all stan-
dards-compliant browsers (that’s approximately 99% of browsers in current
use). It also helps make your content forward-compatible as web technologies
and browser capabilities evolve. Another benefit is that you can tell your cli-
ents that you create “standards-compliant” sites, and they will like you more.

The notion of standards compliance may seem like a no-brainer, but it used
to be that everyone, including the browser makers, played fast and loose
with HTML and scripting. The price we paid was incompatible browser
implementations and the need to create sites twice to make them work for
everyone. I talk more about web standards throughout this book, so I won’t
go into too much detail here. Suffice it to say that the web standards are your
friends. Everything you learn in this book will start you off on the right foot.

For Further Reading
• The W3C site (w3.org/standards) is the primary resource for all web stan-

dards documents.

• The bible for standards compliance and how it makes good business
sense is Designing with Web Standards, 3rd Edition, by Jeffrey Zeldman
(New Riders). It’s getting on in years, but the fundamentals are still solid.

PROGRESSIVE ENHANCEMENT

With a multitude of browsers comes a multitude of levels of support for
the web standards. In fact, no browser has implemented all the standards
100%, and there are always new technologies that are slowly gaining steam.
Furthermore, users can set their own browser preferences, so they may have
a browser that supports JavaScript but have chosen to turn it off. The point
here is that we are faced with a wide range of browser capabilities—from only
basic HTML support to all the bells and whistles.

Progressive enhancement is one strategy for dealing with unknown browser
capabilities (see Note). When designing with progressive enhancement, you
start with a baseline experience that makes the content or core functionality
available to even the most rudimentary browsers or assistive devices. From
there, you layer on more advanced features for the browsers that can handle
them. You might finish with some “nice to have” effects, like animation or
wrapping text around images in interesting shapes, that enhance the experi-
ence for users with the most advanced browsers, but aren’t really critical to
the brand or message.

Sticking with web
standards is your primary
tool for ensuring your
site is as consistent as
possible.

NOT E

Progressive enhancement is the flip side
of an approach to browser diversity
called graceful degradation, in which
you design the fully enhanced experience
first, then create a series of fallbacks for
non-supporting browsers. Both methods
have their place in modern development.
You will find many fallback techniques
suggested in this book to be sure less
capable browsers are accommodated.

3. Some Big Concepts You Need to Know

Progressive Enhancement

39

Progressive enhancement is an approach that informs all aspects of page
design and production, including HTML, CSS, and JavaScript:

Authoring strategy

When an HTML document is written in logical order and its elements
are marked up in a meaningful way, it will be usable on the widest range
of browsing environments, including the oldest browsers, future brows-
ers, and mobile and assistive devices. It may not look exactly the same,
but the important thing is that your content is available. It also ensures
that search engines like Google will catalog the content correctly. A clean
HTML document with its elements accurately and thoroughly described
is the foundation for accessibility.

Styling strategy

You can create layers of experience simply by taking advantage of the way
browsers parse style sheet rules. Without going into too much technical
detail, you can write a style rule that makes an element background red,
but also include a style that gives it a cool gradient (a blend from one
color to another) for browsers that know how to render gradients. Or
you can use a cutting-edge CSS selector to deliver certain styles only to
cutting-edge browsers. The knowledge that browsers simply ignore prop-
erties and rules they don’t understand gives you license to innovate with-
out bringing older browsers to their knees. You just have to be mindful of
styling the baseline experience first, then adding improvements once the
minimum requirements are met.

Scripting strategy

As with other web technologies, there are discrepancies in how browsers
handle JavaScript (particularly on non-desktop devices), and some users
opt to turn it off entirely. The first rule in progressive enhancement is
to make sure basic functionality—such as linking from page to page or
accomplishing essential tasks like data submission via forms—is intact
even when JavaScript is off. In this way, you ensure the baseline experi-
ence, and enhance it when JavaScript is available.

For Further Reading
• There is no better introduction to the progressive enhancement approach

than the book Adaptive Web Design: Crafting Rich Experiences with
Progressive Enhancement, 2nd Edition, by Aaron Gustafson (New Riders).

• The Uncertain Web: Web Development in a Changing Landscape by Rob
Larson (O’Reilly).

• Once you have more chops, the book Designing with Progressive
Enhancement by Todd Parker, Patty Toland, Scott Jehl, and Maggie
Costello Wachs (New Riders) is an excellent deep-dive into techniques
and best practices. Read more about it at filamentgroup.com/dwpe/.

Progressive enhancement
is a strategy for coping
with unknown browser
capabilities.

Part I. Getting Started

Responsive Web Design

40

RESPONSIVE WEB DESIGN

By default, most browsers on small devices such as smartphones and tablets
shrink a web page down to fit the screen and provide mechanisms for zoom-
ing and moving around the page. Although it technically works, it is not a
great experience. The text is too small to read, the links are too small to tap,
and all that zooming and panning around is distracting.

Responsive Web Design (RWD) is a strategy for providing appropriate layouts
to devices based on the size of the viewport (browser window). The key to
Responsive Web Design is serving a single HTML document (with one URL)
to all devices, but applying different style sheets based on the screen size
in order to provide the most optimized layout for that device. For example,
when the page is viewed on a smartphone, it appears in one column with
large links for easy tapping. But when that same page is viewed on a large
desktop browser, the content rearranges into multiple columns with tradi-
tional navigation elements. It’s like magic! (Except that it’s actually just CSS.)

The web design community has been abuzz about responsive design since
Ethan Marcotte first wrote about it and coined the phrase in his article
“Responsive Web Design” on A List Apart in 2010 (alistapart.com/articles/
responsive-web-design/). It’s become one of the primary tools we use to cope
with unknown viewport size.

FIGURE 3-3 shows some examples of responsive sites at the typical dimensions
for a desktop monitor, tablet, and smartphone. You can see many more inspira-
tional examples at the Media Queries gallery site (mediaqueri.es). Try opening
one of the responsive sites in your browser and then resizing the window nar-
row and wide. Watch as the layout changes based on window size. Très cool.

Responsive Web Design helps with matters of layout, but it is not a solution
to all mobile web design challenges. The fact is that providing the best experi-
ences for your users and their chosen device may require optimizations that
go beyond adjusting the look and feel. You can better address some problems
by using the server to detect the device and its capabilities and then making
decisions on what to send back.

For some sites and services, it may be preferable to build a separate mobile
site (see the “M-dot Sites” sidebar) with a customized interface and feature
set that takes advantage of phone capabilities like geolocation. That said,
although responsive design won’t fix everything, it is an important part of the
solution for delivering satisfactory experiences on a wide variety of browsers.

For Further Reading
I’ll cover Responsive Web Design in more detail in Chapter 17, Responsive
Web Design, once you have more code experience under your belt. There you
will find plenty of resources to continue your responsive design education.

Ethan Marcotte personal site
ethanmarcotte.com

NASA
nasa.gov

FIGURE 3-3. A responsive site’s
layout changes based on the size of the
browser window.

3. Some Big Concepts You Need to Know

Responsive Web Design

41

Responsive Web Design
is a strategy for dealing
with unknown screen size.

M-dot Sites
Some companies and services choose to build an entirely separate site, with
a unique URL, just for mobile devices. M-dot sites (named because their URLs
typically begin with “m.” or “mobile.”) offer a reduced set of options and may also
include mobile-specific features such as geolocation. A lot of the “extra” stuff (like
promotions) from the desktop site is simply stripped away. (It makes you wonder
what value it adds on the desktop.) A dedicated mobile site may be the best solution
if you know that your mobile users have very different usage patterns than folks
seated at a desk.

FIGURE 3-4 compares CVS’s primary and m-dot sites as they appeared in early 2018.
You can see that phone users are offered a more streamlined set of options. Other
notable sites with dedicated mobile versions are Twitter and Facebook.

The point here is that Responsive Web Design is not a universal solution. For sites
that feature mainly text content, a little layout adjustment may be all that is needed
to deliver a good reading experience on all devices. For complex sites and web
applications, a very different experience may be preferred.

The downside of a dedicated mobile site is that it is more than twice the work.
It requires additional content planning, design templates, production time, and
ongoing maintenance. But if it means giving your visitors the functionality they need,
it is worth the investment.

It is possible that you have a business for which mobile use is so distinct from
desktop use that a separate mobile site makes sense, but in general, m-dot sites
are fading away in favor of RWD. Google is helping to speed this process along by
encouraging all m-dot sites to migrate to RWD before the launch of their “mobile-
first index” in 2018 (webmasters.googleblog.com/2016/11/mobile-first-indexing.
html). If search result rankings are a concern, you may get more mileage from going
responsive.

FIGURE 3-4. A comparison of the desktop site and the dedicated mobile site
for the same business.

Part I. Getting Started

One Web for All (Accessibility)

42

ONE WEB FOR ALL (ACCESSIBILITY)

We’ve been talking about the daunting number of browsers in use today, but
so far, we’ve only addressed visual browsers controlled with mouse pointers
or fingertips. It is critical, however, to keep in mind that people access the web
in many different ways—with a keyboard, mouse, voice commands, screen
readers, Braille output, magnifiers, joysticks, foot pedals, and so on. Web
designers must build pages in a manner that creates as few barriers as pos-
sible to getting to information, regardless of the user’s ability and the device
used to access the web. In other words, you must design for accessibility.

Although intended for users with disabilities such as poor vision or limited
mobility, the techniques and strategies developed for accessibility also benefit
other users with less-than-optimum browsing experiences. Accessible sites are
also more effectively indexed by search engines such as Google. Making your
site accessible is well worth the extra effort.

There are four broad categories of disabilities that affect how people interact
with their computers and the information on them:

Vision impairment

People with low or no vision may use an assistive device such as a screen
reader, Braille display, or a screen magnifier to get content from the screen.
They may also simply use the browser’s text zoom function to make the
text large enough to read.

Mobility impairment

Users with limited or no use of their hands may use special devices such
as modified mice and keyboards, foot pedals, voice commands, or joy-
sticks to navigate the web and enter information.

Auditory impairment

Users with limited or no hearing will miss out on audio aspects of mul-
timedia, so it is necessary to provide alternatives, such as transcripts for
audio tracks or captions for video.

Cognitive impairment

Users with memory, reading comprehension, problem solving, and atten-
tion limitations benefit when sites are designed simply and clearly. These
qualities are helpful to anyone using your site.

The W3C started the Web Accessibility Initiative (WAI) to address the need
to make the web usable for everyone. The WAI site (www.w3.org/WAI) is an
excellent starting point for learning more about web accessibility. One of the
documents produced by the WAI to help developers create accessible sites is
the Web Content Accessibility Guidelines (WCAG and WCAG 2.0). You can
read them all at www.w3.org/WAI/intro/wcag.php. The US government based
its Section 508 accessibility guidelines on the Priority 1 points of the WCAG
(see the sidebar “Government Accessibility Requirements: Section 508”). All

3. Some Big Concepts You Need to Know

One Web for All (Accessibility)

43

sites benefit from these guidelines, but if you are designing a government site,
adherence is a requirement.

Another W3C effort is the WAI-ARIA (Accessible Rich Internet Applications)
spec, which addresses the accessibility of web applications that include
dynamically generated content, scripting, and advanced interface ele-
ments that are particularly confounding to assistive devices. The ARIA
Recommendation defines a number of roles for content and widgets that
authors can explicitly apply using the role attribute. Roles include menubar,
progressbar, slider, timer, and tooltip, to name just a few. For the complete
list of roles, go to www.w3.org/TR/wai-aria/#role_definitions.

For Further Reading
The following resources are good starting points for further exploration of
web accessibility:

• The Web Accessibility Initiative (WAI), www.w3.org/WAI

• WebAIM: Web Accessibility in Mind, www.webaim.org

• Accessibility Handbook: Making 508 Compliant Websites by Katie
Cunningham (O’Reilly)

• Universal Design for Web Applications: Web Applications That Reach
Everyone by Wendy Chisholm and Matt May (O’Reilly)

US Government Accessibility Requirements: Section 508
If you create a site receiving federal funding from the US
government, you are required by law to comply with the Section
508 guidelines, which ensure that electronic information and
technology are available to people with disabilities. State and
other publicly funded sites may also be required to comply.

The following guidelines, excerpted from the Section 508
Standards at www.section508.gov, provide a good checklist for
basic accessibility for all websites:

1. A text equivalent for non-text elements shall be provided
(e.g., via the “alt” attribute or in element content).

2. Equivalent alternatives for any multimedia presentation shall
be synchronized with the presentation.

3. Web pages shall be designed so that all information
conveyed with color is also available without color—for
example, from context or markup.

4. Documents shall be organized so they are readable without
requiring an associated style sheet.

5. Row and column headers shall be identified for data tables.

6. Markup shall be used to associate data and header cells for
tables with two or more levels of row or column headers.

7. Pages shall be designed to avoid causing the screen to
flicker with a frequency greater than 2 Hz and lower than
55 Hz.

8. When pages utilize scripting languages to display content, or
to create interface elements, the information provided by the
script shall be identified with functional text that can be read
by assistive technology.

9. When a web page requires that an applet, plug-in, or other
application be present on the client system to interpret page
content, the page must provide a link to a plug-in or applet
that complies with §1194.21(a) through (l).

10. When electronic forms are designed to be completed online,
the form shall allow people using assistive technology to
access the information, field elements, and functionality
required for completion and submission of the form,
including all directions and cues.

11. A method shall be provided that permits users to skip
repetitive navigation links.

12. When a timed response is required, the user shall be alerted
and given sufficient time to indicate more time is required.

Part I. Getting Started

The Need for Speed (Site Performance)

44

THE NEED FOR SPEED
(SITE PERFORMANCE)

Although the number of users accessing the internet on slow dial-up connec-
tions is shrinking (3–5% in the US as of this writing), the percentage of folks
using mobile phones to access the web is increasing dramatically; and for
some sectors, such as social media and search, mobile has already exceeded
desktop usage. If you have a smartphone, then you know how frustrating it is
to wait for a web page to fully display over a cellular data connection.

Site performance is critical regardless of how your users access your site. A
study by Google in 20091 showed that the addition of just 100 to 400 milli-
seconds to their search results page resulted in reduced searches (–0.2 to
–0.6%). Amazon.com showed that reducing page load times by just 100ms
resulted in a 1% increase in revenue.2 Other studies show that users expect a
site to load in under 2 seconds, and nearly a third of your audience will leave
your site for another if it doesn’t. Furthermore, those people aren’t likely to
come back. Google has added site speed to its search algorithm, so if your site
is a slowpoke, it’s not likely to show up in that coveted first screen of results.
The takeaway here is that site performance (down to the millisecond!) mat-
ters a lot.

There are many things you can do to improve the performance of your site,
and they fall under two broad categories: limiting file sizes and reducing the
number of requests to the server. The following list only scratches the surface
for site optimization, but it gives you a general idea of what can be done:

• Optimize images so they are the smallest file size possible without sacri-
ficing quality. You’ll learn image optimization techniques in Chapter 24,
Image Asset Production.

• Streamline HTML markup, avoiding unnecessary levels of nested elements.

• Minimize HTML and CSS documents by removing extra character spaces
and line returns.

• Keep JavaScript to a minimum.

• Add scripts in such a way that they load in parallel with other page assets
and don’t block rendering.

• Don’t load unnecessary assets (such as images, scripts, or JavaScript
libraries).

• Reduce the number of times the browser makes requests of the server
(known as HTTP requests).

1 “Speed Matters,” googleresearch.blogspot.com/2009/06/speed-matters.html.
2 Statistic from “Make Data Matter,” PowerPoint presentation by Greg Linden of Stanford

University (2006).

3. Some Big Concepts You Need to Know

The Need for Speed (Site Performance)

45

Every trip to the server in the form of an HTTP request takes a few milli-
seconds, and those milliseconds can add up. All those little Twitter widgets,
Facebook Like buttons, and advertisements can make dozens of server
requests each. You may be surprised to see how many server requests even a
simple site makes.

If you’d like to see for yourself, you can use the Network tool available with
the Developer tools in Chrome, Safari, or Firefox. The Network tool displays
each request to the server and how many milliseconds it took. Here’s how you
use it in Chrome (but all the browsers work similarly):

1. Launch the Chrome browser and go to any web page.

2. Go to the View menu and select Developer → Developer Tools. A panel will
open at the bottom of the browser.

3. Select the Network tab in the tools view and load a web page. The chart
(commonly referred to as a waterfall chart) shows you all the requests
made and assets downloaded. The columns on the right show the
amount of time each request took in milliseconds. At the bottom of the
chart, you can see a summary of the number of requests made and the
total amount of data transferred.

FIGURE 3-5 shows a portion of the performance waterfall chart for oreilly.com.
You can poke around any site on the web this way. It can be very educational.

I won’t address site performance in deep technical detail in this book, but I do
want you to remember the importance of keeping file sizes as small as pos-
sible and eliminating unnecessary server requests in your web design work.

FIGURE 3-5. Waterfall charts such as this one created by the Chrome Network
developer tool show the individual server requests made by a web page and the
amount of time each request takes.

Part I. Getting Started

Test Yourself

46

For Further Reading
There are other techniques that are too technical for this book (and frankly,
for me), and I figure if you are reading this book, you are probably not quite
ready to become a site performance wizard. But when you are ready to take
it on, here are some resources that should help:

• Lara Hogan has assembled a list of performance-related studies, tools,
and resources at larahogan.me/design. You can also read her book,
Designing for Performance (O’Reilly), there for free.

• High Performance Mobile Web: Best Practices for Optimizing Mobile Web
Apps by Maximiliano Firtman (O’Reilly) covers optimization methods
and tools to check your progress.

• Google’s site Make the Web Faster (code.google.com/speed/) is an excellent
first stop for learning about site optimization. It compiles a number of
excellent tutorials and articles as well as tools for measuring site speed.

TEST YOURSELF

Here are a few questions that check your knowledge of the Big Concepts. If
you are stumped, you can find the answers in Appendix A.

1. List at least two unknown factors you need to consider when designing
and developing a site.

2. Match the technology or practice on the left with the problem it best
addresses:

1. ____ Progressive enhancement a. Assistive reading and input devices

2. ____ Server-side detection b. Slow connection speeds

3. ____ Responsive design c. All levels of browser capabilities

4. ____ WAI-ARIA d. Determining which device is being used

5. ____ Site performance
optimization

e. A variety of screen sizes

3. Web accessibility strategies take into account four broad categories of
disabilities. Name at least three, and provide a measure you might take to
ensure content is accessible for each.

4. When would you use a waterfall chart?

More Site Performance
Tools
Try some of these tools for testing site
performance:

• WebPageTest (webpagetest.org) is a
tool that was originally developed
for AOL, but is now available for
all to use for free under an open
source license. Just type in a
URL, and WebPagetest returns a
waterfall diagram, screenshot, and
other statistics.

• Google’s PageSpeed Insights
(developers.google.com/
speed/pagespeed/insights/) is
another service that analyzes the
performance of any site you point
it to. It also generates suggestions
for making your page load faster.

• Yahoo!’s freely available YSlow
tool (yslow.org) analyzes a site
according to 23 rules of web
performance, and then gives the
site a grade and suggestions for
improvement.

II
HTML FOR STRUCTURE

IN THIS CHAPTER

An introduction to elements
and attributes

Marking up a simple web page

The elements that provide
document structure

Troubleshooting broken
web pages

Part I provided a general overview of the web design environment. Now that
we’ve covered the big concepts, it’s time to roll up our sleeves and start creat-
ing a real web page. It will be an extremely simple page, but even the most
complicated pages are based on the principles described here.

In this chapter, we’ll create a web page step-by-step so you can get a feel for
what it’s like to mark up a document with HTML tags. The exercises allow
you to work along.

This is what I want you to get out of this chapter:

• Get a feel for how markup works, including an understanding of elements
and attributes.

• See how browsers interpret HTML documents.

• Learn how HTML documents are structured.

• Get a first glimpse of a style sheet in action.

Don’t worry about learning the specific text elements or style sheet rules
at this point; we’ll get to those in the following chapters. For now, just pay
attention to the process, the overall structure of the document, and the new
terminology.

A WEB PAGE, STEP-BY-STEP

You got a look at an HTML document in Chapter 2, How the Web Works,
but now you’ll get to create one yourself and play around with it in the
browser. The demonstration in this chapter has five steps that cover the basics
of page production:

CREATING A
SIMPLE PAGE
(HTML OVERVIEW)

4
CHAPTER

49

Step 1: Start with content. As a starting point, we’ll write up raw text content
and see what browsers do with it.

Step 2: Give the document structure. You’ll learn about HTML element syn-
tax and the elements that set up areas for content and metadata.

Step 3: Identify text elements. You’ll describe the content using the appropri-
ate text elements and learn about the proper way to use HTML.

Step 4: Add an image. By adding an image to the page, you’ll learn about
attributes and empty elements.

Step 5: Change how the text looks with a style sheet. This exercise gives you
a taste of formatting content with Cascading Style Sheets.

By the time we’re finished, you’ll have written the document for the page
shown in FIGURE 4-1. It’s not very fancy, but you have to start somewhere.

FIGURE 4-1. In this chapter, we’ll write the HTML document for this page in five steps.

We’ll be checking our work in a browser frequently throughout this demon-
stration—probably more than you would in real life. But because this is an
introduction to HTML, it’s helpful to see the cause and effect of each small
change to the source file along the way.

LAUNCH A TEXT EDITOR

In this chapter and throughout the book, we’ll be writing out HTML docu-
ments by hand, so the first thing we need to do is launch a text editor. The
text editor that is provided with your operating system, such as Notepad
(Windows) or TextEdit (Macintosh), will do for these purposes. Other text
editors are fine as long as you can save plain-text files with the .html exten-
sion. If you have a visual web-authoring tool such as Dreamweaver, set it
aside for now. I want you to get a feel for marking up a document manually
(see the sidebar “HTML the Hard Way”).

HTML the Hard Way
I stand by my method of teaching
HTML the old-fashioned way—by
hand. There’s no better way to truly
understand how markup works than
typing it out, one tag at a time, and
then opening your page in a browser.
It doesn’t take long to develop a feel
for marking up documents properly.

Although you may choose to use
a visual or drag-and-drop web-
authoring tool down the line,
understanding HTML will make using
your tools easier and more efficient.
In addition, you will be glad that
you can look at a source file and
understand what you’re seeing. It
is also crucial for troubleshooting
broken pages or fine-tuning the
default formatting that web tools
produce.

And for what it’s worth, professional
web developers tend to mark up
content manually for better control
over the code and the ability to
make deliberate decisions about
what elements to use.

Part II. HTML for Structure

Launch a Text Editor

50

This section shows how to open new documents in Notepad and TextEdit.
Even if you’ve used these programs before, skim through for some special set-
tings that will make the exercises go more smoothly. We’ll start with Notepad;
Mac users can jump ahead.

Creating a New Document in Notepad (Windows)
These are the steps to creating a new document in Notepad on Windows 10
(FIGURE 4-2):

1. Search for “Notepad” to access it quickly. Click on Notepad to open a new
document window, and you’re ready to start typing. 1

2. Next, make the extensions visible. This step is not required to make
HTML documents, but it will help make the file types clearer at a glance.
Open the File Explorer, select the View tab, and then select the Options
button on the right. In the Folder Options panel, select the View tab
again. 2

3. Find “Hide extensions for known file types” and uncheck that option. 3

4. Click OK to save the preference 4, and the file extensions will now be
visible.

1 Click on Notepad to open a new
document.

4 Click OK to save the preference, and
the file extensions will now be visible.

3 Uncheck “Hide extensions for known
file types.”

2 Open the File Explorer, select the View
tab, and then select the Options
button on the right (not shown).
Select the View tab.

FIGURE 4-2. Creating a new document in Notepad.

4. Creating a Simple Page

Launch a Text Editor

51

Creating a New Document in TextEdit
(macOS)
By default, TextEdit creates rich-text documents—that
is, documents that have hidden style-formatting instruc-
tions for making text bold, setting font size, and so on.
You can tell that TextEdit is in rich-text mode when it has
a formatting toolbar at the top of the window (plain-text
mode does not). HTML documents need to be plain-text
documents, so we’ll need to change the format, as shown
in this example (FIGURE 4-3):

1. Use the Finder to look in the Applications folder for
TextEdit. When you’ve found it, double-click the
name or icon to launch the application.

2. In the initial TextEdit dialog box, click the New
Document button in the bottom-left corner. If you
see the text formatting menu and tab ruler at the top
of the Untitled document, you are in rich-text mode
1. If you don’t, you are in plain-text mode 2. Either
way, there are some preferences you need to set.

3. Close that document, and open the Preferences dia-
log box from the TextEdit menu.

4. Change these preferences:

On the New Document tab, select Plain text 3.
Under Options, deselect all of the automatic format-
ting options 4.

On the Open and Save tab, select Display HTML files
as HTML Code 5 and deselect “Add ‘.txt’ extensions
to plain text files” 6. The rest of the defaults should
be fine.

5. When you are done, click the red button in the top-
left corner.

6. Now create a new document by selecting File → New.
The formatting menu will no longer be there, and
you can save your text as an HTML document. You
can always convert a document back to rich text by
selecting Format → Make Rich Text when you are not
using TextEdit for HTML.

Formatting menu indicates rich text. Plain text documents have no menu.1 2

3

4

5

6

FIGURE 4-3. Launching TextEdit and choosing “Plain text” settings in the Preferences.

Part II. HTML for Structure

Launch a Text Editor

52

STEP 1: START WITH CONTENT

Now that we have our new document, it’s time to get typing. A web page is
all about content, so that’s where we begin our demonstration. EXERCISE 4-1

walks you through entering the raw text content and saving the document
in a new folder.

EXERCISE 4-1. Entering content

1. Type the home page content below into the new document in your text editor. Copy it
exactly as you see it here, keeping the line breaks the same for the sake of playing along.
The raw text for this exercise is also available online at learningwebdesign.com/5e/
materials/.

Black Goose Bistro

The Restaurant
The Black Goose Bistro offers casual lunch and dinner fare in a relaxed
atmosphere. The menu changes regularly to highlight the freshest local
ingredients.

Catering
You have fun. We'll handle the cooking. Black Goose Catering can handle
events from snacks for a meetup to elegant corporate fundraisers.

Location and Hours
Seekonk, Massachusetts;
Monday through Thursday 11am to 9pm; Friday and Saturday, 11am to
midnight

2. Select “Save” or “Save as” from the File menu to get the Save As dialog box (FIGURE 4-4).
The first thing you need to do is create a new folder (click the New Folder button on both
Windows and Mac) that will contain all of the files for the site. The technical name for the
folder that contains everything is the local root directory.

Windows 10 MacOS 10

FIGURE 4-4. Saving index.html in a new folder called bistro.

→

4. Creating a Simple Page

Step 1: Start with Content

53

Naming Conventions
It is important that you follow these rules and conventions when
naming your files:

Use proper suffixes for your files. HTML files must end with
.html or .htm. Web graphics must be labeled according to
their file format: .gif, .png, .jpg (.jpeg is also acceptable,
although less common), or .svg.

Never use character spaces within filenames. It is common
to use an underline character or hyphen to visually separate
words within filenames, such as robbins_bio.html or robbins-
bio.html.

Avoid special characters such as ?, %, #, /, :, ;, •, etc. Limit
filenames to letters, numbers, underscores, hyphens, and
periods. It is also best to avoid international characters, such
as the Swedish å.

Filenames may be case-sensitive, depending on your server
configuration. Consistently using all lowercase letters in
filenames, although not required, is one way to make your
filenames easier to manage.

Keep filenames short. Long names are more likely to be
misspelled, and short names shave a few extra bytes off the
file size. If you really must give the file a long, multiword
name, you can separate words with hyphens, such as
a-long-document-title.html, to improve readability.

Self-imposed conventions. It is helpful to develop a
consistent naming scheme for huge sites—for instance,
always using lowercase with hyphens between words. This
takes some of the guesswork out of remembering what you
named a file when you go to link to it later.

Name the new folder bistro, and save the text file as index.html in it. The filename needs
to end in .html to be recognized by the browser as a web document. See the sidebar
“Naming Conventions” for more tips on naming files.

3. Just for kicks, let’s take a look at index.html in a browser.

Windows users: Double-click the filename in the File Explorer to launch your default
browser, or right-click the file for the option to open it in the browser of your choice.

Mac users: Launch your favorite browser (I’m using Google Chrome) and choose Open or
Open File from the File menu. Navigate to index.html, and then select the document to
open it in the browser.

4. You should see something like the page shown in FIGURE 4-5. We’ll talk about the
results in the following section.

FIGURE 4-5. A first look at the content in a browser.

Part II. HTML for Structure

Step 1: Start with Content

54

Learning from Step 1
Our page isn’t looking so good (FIGURE 4-5). The text is all run together into
one block—that’s not how it looked when we typed it into the original docu-
ment. There are a couple of lessons to be learned here. The first thing that is
apparent is that the browser ignores line breaks in the source document. The
sidebar “What Browsers Ignore” lists other types of information in the source
document that are not displayed in the browser window.

Second, we see that simply typing in some content and naming the document
.html is not enough. While the browser can display the text from the file, we
haven’t indicated the structure of the content. That’s where HTML comes in.
We’ll use markup to add structure: first to the HTML document itself (com-
ing up in Step 2), then to the page’s content (Step 3). Once the browser knows
the structure of the content, it can display the page in a more meaningful way.

STEP 2: GIVE THE HTML DOCUMENT
STRUCTURE

We have our content saved in an HTML document—now we’re ready to start
marking it up.

The Anatomy of an HTML Element
Back in Chapter 2 you saw examples of elements with an opening tag (<p>
for a paragraph, for example) and a closing tag (</p>). Before we start adding
tags to our document, let’s look at the anatomy of an HTML element (its syn-
tax) and firm up some important terminology. A generic container element
is labeled in FIGURE 4-6.

Opening tag

Element

<elementname> Content here </elementname>

Closing tag
(starts with a /)

Content
(may be text and/or other HTML elements)

<h1> Black Goose Bistro </h1>Example:

FIGURE 4-6. The parts of an HTML container element.

What Browsers Ignore
The following information in the
source document will be ignored
when it is viewed in a browser:

Multiple-character (white) spaces

When a browser encounters
more than one consecutive blank
character space, it displays a single
space. So if the document contains

long, long ago

the browser displays:

long, long ago

Line breaks (carriage returns).
Browsers convert carriage returns
to white spaces, so following the
earlier “ignore multiple white
spaces” rule, line breaks have no
effect on formatting the page.

Tabs
Tabs are also converted to
character spaces, so guess what?
They’re useless for indenting
text on the web page (although
they may make your code more
readable).

Unrecognized markup

Browsers are instructed to ignore
any tag they don’t understand
or that was specified incorrectly.
Depending on the element and
the browser, this can have varied
results. The browser may display
nothing at all, or it may display the
contents of the tag as though it
were normal text.

Text in comments

Browsers do not display text
between the special <!-- and -->
tags used to denote a comment.
See the upcoming “Adding
Hidden Comments” sidebar.

4. Creating a Simple Page

Step 2: Give the HTML Document Structure

55

Elements are identified by tags in the text source. A tag consists of the ele-
ment name (usually an abbreviation of a longer descriptive name) within
angle brackets (< >). The browser knows that any text within brackets is hid-
den and not displayed in the browser window.

The element name appears in the opening tag (also called a start tag) and
again in the closing (or end) tag preceded by a slash (/). The closing tag
works something like an “off” switch for the element. Be careful not to use the
similar backslash character in end tags (see the tip “Slash Versus Backslash”).

The tags added around content are referred to as the markup. It is important
to note that an element consists of both the content and its markup (the start
and end tags). Not all elements have content, however. Some are empty by
definition, such as the img element used to add an image to the page. We’ll
talk about empty elements a little later in this chapter.

One last thing: capitalization. In HTML, the capitalization of element names
is not important (it is not case-sensitive). So , , and are all
the same as far as the browser is concerned. However, most developers prefer
the consistency of writing element names in all lowercase (see Note), as I will
be doing throughout this book.

Basic Document Structure
FIGURE 4-8 shows the recommended minimal skeleton of an HTML docu-
ment. I say “recommended” because the only element that is required in
HTML is the title. But I feel it is better, particularly for beginners, to explic-
itly organize documents into metadata (head) and content (body) areas. Let’s
take a look at what’s going on in this minimal markup example.

<!DOCTYPE html>

<html>

 <head>
 <meta charset="utf-8">
 <title>Title here</title>
 </head>

 <body>
 Page content goes here.
 </body>

</html>

1

2

3
4

5

6

FIGURE 4-8. The minimal structure of an HTML document includes head and body
contained within the html root element.

M A R KU P T I P

Slash Versus Backslash
HTML tags and URLs use the slash
character (/). The slash character is
found under the question mark (?) on
the English QWERTY keyboard (key
placement on keyboards in other
countries may vary).

It is easy to confuse the slash with
the backslash character (\), which
is found under the bar character (|);
see FIGURE 4-7. The backslash key
will not work in tags or URLs, so be
careful not to use it.

FIGURE 4-7. Slash versus
backslash keys.

NOT E

There is a stricter version of HTML called
XHTML that requires all element and
attribute names to appear in lowercase.
HTML5 has made XHTML all but obsolete
except for certain use cases when it is
combined with other XML languages, but
the preference for all lowercase element
names has persisted.

Part II. HTML for Structure

Step 2: Give the HTML Document Structure

56

1 I don’t want to confuse things, but the first line in the example isn’t an
element at all. It is a document type declaration (also called DOCTYPE
declaration) that lets modern browsers know which HTML specification
to use to interpret the document. This DOCTYPE identifies the docu-
ment as written in HTML5.

2 The entire document is contained within an html element. The html ele-
ment is called the root element because it contains all the elements in the
document, and it may not be contained within any other element.

3 Within the html element, the document is divided into a head and a
body. The head element contains elements that pertain to the document
that are not rendered as part of the content, such as its title, style sheets,
scripts, and metadata.

4 meta elements provide document metadata, information about the docu-
ment. In this case, it specifies the character encoding (a standardized
collection of letters, numbers, and symbols) used in the document as
Unicode version UTF-8 (see the sidebar “Introducing Unicode”). I don’t
want to go into too much detail on this right now, but know that there
are many good reasons for specifying the charset in every document, so I
have included it as part of the minimal document markup. Other types of
metadata provided by the meta element are the author, keywords, publish-
ing status, and a description that can be used by search engines.

5 Also in the head is the mandatory title element. According to the HTML
specification, every document must contain a descriptive title.

6 Finally, the body element contains everything that we want to show up in
the browser window.

Are you ready to start marking up the Black Goose Bistro home page? Open
the index.html document in your text editor and move on to EXERCISE 4-2.

Introducing Unicode
All the characters that make up languages are stored in
computers as numbers. A standardized collection of characters
with their reference numbers (code points) is called a coded
character set, and the way in which those characters are
converted to bytes for use by computers is the character
encoding. In the early days of computing, computers used
limited character sets such as ASCII that contained 128
characters (letters from Latin languages, numbers, and common
symbols). The early web used the Latin-1 (ISO 8859-1) character
encoding that included 256 Latin characters from most Western
languages. But given the web was “worldwide,” it was clearly not
sufficient.

Enter Unicode. Unicode (also called the Universal Character
Set) is a super-character set that contains over 136,000

characters (letters, numbers, symbols, ideograms, logograms,
etc.) from all active modern languages. You can read all about it
at unicode.org. Unicode has three standard encodings—UTF-8,
UTF-16, and UTF-32—that differ in the number of bytes used to
represent the characters (1, 2, or 3, respectively).

HTML5 uses the UTF-8 encoding by default, which allows wide-
ranging languages to be mixed within a single document. It
is always a good idea to declare the character encoding for a
document with the meta element, as shown in the previous
example. Your server also needs to be configured to identify
HTML documents as UTF-8 in the HTTP header (information
about the document that the server sends to the user agent). You
can ask your server administrator to confirm the encoding of the
HTML documents.

4. Creating a Simple Page

Step 2: Give the HTML Document Structure

57

EXERCISE 4-2. Adding minimal structure

1. Open the new index.html document if it isn’t open already and
add the DOCTYPE declaration:

<!DOCTYPE html>

2. Put the entire document in an HTML root element by adding an
<html> start tag after the DOCTYPE and an </html> end tag at
the very end of the text.

3. Next, create the document head that contains the title for the
page. Insert <head> and </head> tags before the content. Within
the head element, add information about the character encoding
<meta charset="utf-8">, and the title, “Black Goose Bistro”,
surrounded by opening and closing <title> tags.

4. Finally, define the body of the document by wrapping the text
content in <body> and </body> tags. When you are done, the
source document should look like this (the markup is shown in
color to make it stand out):

<!DOCTYPE html>
<html>

<head>
 <meta charset="utf-8">
 <title>Black Goose Bistro</title>
</head>

<body>
Black Goose Bistro

The Restaurant
The Black Goose Bistro offers casual lunch and
dinner fare in a relaxed atmosphere. The menu
changes regularly to highlight the freshest local
ingredients.

Catering
You have fun. We'll handle the cooking. Black Goose
Catering can handle events from snacks for a meetup
to elegant corporate fundraisers.

Location and Hours
Seekonk, Massachusetts;
Monday through Thursday 11am to 9pm; Friday and
Saturday, 11am to midnight
</body>
</html>

5. Save the document in the bistro directory, so that it overwrites
the old version. Open the file in the browser or hit Refresh or
Reload if it is open already. FIGURE 4-9 shows how it should
look now.

FIGURE 4-9. The page in a browser after the document structure elements have
been defined.

Part II. HTML for Structure

Step 2: Give the HTML Document Structure

58

Not much has changed in the bistro page after setting up the document,
except that the browser now displays the title of the document in the top bar
or tab (FIGURE 4-9). If someone were to bookmark this page, that title would
be added to their Bookmarks or Favorites list as well (see the sidebar “Don’t
Forget a Good Title”). But the content still runs together because we haven’t
given the browser any indication of how it should be structured. We’ll take
care of that next.

STEP 3: IDENTIFY TEXT ELEMENTS

With a little markup experience under your belt, it should be a no-brainer to
add the markup for headings and subheads (h1 and h2), paragraphs (p), and
emphasized text (em) to our content, as we’ll do in EXERCISE 4-3. However,
before we begin, I want to take a moment to talk about what we’re doing and
not doing when marking up content with HTML.

Mark It Up Semantically
The purpose of HTML is to add meaning and structure to the content. It is
not intended to describe how the content should look (its presentation).

Your job when marking up content is to choose the HTML element that pro-
vides the most meaningful description of the content at hand. In the biz, we
call this semantic markup. For example, the most important heading at the
beginning of the document should be marked up as an h1 because it is the
most important heading on the page. Don’t worry about what it looks like…
you can easily change that with a style sheet. The important thing is that you
choose elements based on what makes the most sense for the content.

In addition to adding meaning to content, the markup gives the document
structure. The way elements follow each other or nest within one another cre-
ates relationships between them. You can think of this structure as an outline
(its technical name is the DOM, for Document Object Model). The underly-
ing document hierarchy gives browsers cues on how to handle the content.
It is also the foundation upon which we add presentation instructions with
style sheets and behaviors with JavaScript.

Although HTML was intended to be used strictly for meaning and structure
since its creation, that mission was somewhat thwarted in the early years of
the web. With no style sheet system in place, HTML was extended to give
authors ways to change the appearance of fonts, colors, and alignment using
markup alone. Those presentational extras are still out there, so you may run
across them if you view the source of older sites or a site made with old tools.
In this book, however, I’ll focus on using HTML the right way, in keeping
with the contemporary standards-based, semantic approach to web design.

OK, enough lecturing. It’s time to get to work on that content in EXERCISE 4-3.

Don’t Forget a Good Title
A title element is not only required
for every document, but it is also
quite useful. The title is what is
displayed in a user’s Bookmarks or
Favorites list and on tabs in desktop
browsers. Descriptive titles are also
a key tool for improving accessibility,
as they are the first things a person
hears when using a screen reader
(an assistive device that reads the
content of a page aloud for users with
impaired sight). Search engines rely
heavily on document titles as well.

For these reasons, it’s important to
provide thoughtful and descriptive
titles for all your documents and
avoid vague titles, such as “Welcome”
or “My Page.” You may also want
to keep the length of your titles in
check so they are able to display in
the browser’s title area. Knowing that
users typically have a number of tabs
open or a long list of Bookmarks,
put your most uniquely identifying
information in the first 20 or so
characters.

The purpose of HTML
is to add meaning and
structure to the content.

4. Creating a Simple Page

Step 3: Identify Text Elements

59

EXERCISE 4-3. Defining text elements

1. Open the document index.html in your text editor, if it isn’t open already.

2. The first line of text, “Black Goose Bistro,” is the main heading for the page, so we’ll mark
it up as a Heading Level 1 (h1) element. Put the opening tag, <h1>, at the beginning of
the line and the closing tag, </h1>, after it, like this:

<h1>Black Goose Bistro</h1>

3. Our page also has three subheads. Mark them up as Heading Level 2 (h2) elements in a
similar manner. I’ll do the first one here; you do the same for “Catering” and “Location
and Hours.”

<h2>The Restaurant</h2>

4. Each h2 element is followed by a brief paragraph of text, so let’s mark those up as
paragraph (p) elements in a similar manner. Here’s the first one; you do the rest:

<p>The Black Goose Bistro offers casual lunch and dinner fare in
a relaxed atmosphere. The menu changes regularly to highlight the
freshest local ingredients.</p>

5. Finally, in the Catering section, I want to emphasize that visitors should just leave
the cooking to us. To make text emphasized, mark it up in an emphasis element (em)
element, as shown here:

<p>You have fun. We'll handle the cooking. Black Goose
Catering can handle events from snacks for a meetup to elegant
corporate fundraisers.</p>

6. Now that we’ve marked up the document, let’s save it as we did before, and open (or
reload) the page in the browser. You should see a page that looks much like the one in
FIGURE 4-10. If it doesn’t, check your markup to be sure that you aren’t missing any
angle brackets or a slash in a closing tag.

FIGURE 4-10. The home page after the content has been marked up with HTML
elements.

Part II. HTML for Structure

Step 3: Identify Text Elements

60

Now we’re getting somewhere. With the elements properly identified, the
browser can now display the text in a more meaningful manner. There are a
few significant things to note about what’s happening in FIGURE 4-10.

Block and Inline Elements
Although it may seem like stating the obvious, it’s worth pointing out that the
heading and paragraph elements start on new lines and do not run together
as they did before. That is because by default, headings and paragraphs dis-
play as block elements. Browsers treat block elements as though they are in
little rectangular boxes, stacked up in the page. Each block element begins
on a new line, and some space is also usually added above and below the
entire element by default. In FIGURE 4-11, the edges of the block elements are
outlined in red.

FIGURE 4-11. The outlines show the structure of the elements in the home page.

By contrast, look at the text we marked up as emphasized (em, outlined in
blue in FIGURE 4-11). It does not start a new line, but rather stays in the flow
of the paragraph. That is because the em element is an inline element (also
called a text-level semantic element or phrasing element). Inline elements do
not start new lines; they just go with the flow.

Default Styles
The other thing that you will notice about the marked-up page in FIGURES

4-10 and 4-11 is that the browser makes an attempt to give the page some

Adding Hidden
Comments
You can leave notes in the source
document for yourself and others
by marking them up as comments.
Anything you put between comment
tags (<!-- -->) will not display in
the browser and will not have any
effect on the rest of the source:

<!-- This is a comment -->
<!-- This is a
 multiple-line comment
 that ends here. -->

Comments are useful for labeling
and organizing long documents,
particularly when they are shared
by a team of developers. In this
example, comments are used to
point out the section of the source
that contains the navigation:

<!-- start global nav -->

 …

<!-- end global nav -->

Bear in mind that although the
browser will not display comments
in the web page, readers can see
them if they “view source,” so be
sure that the comments you leave
are appropriate for everyone.

4. Creating a Simple Page

Step 3: Identify Text Elements

61

visual hierarchy by making the first-level heading the biggest and boldest
thing on the page, with the second-level headings slightly smaller, and so on.

How does the browser determine what an h1 should look like? It uses a style
sheet! All browsers have their own built-in style sheets (called user agent
style sheets in the spec) that describe the default rendering of elements. The
default rendering is similar from browser to browser (for example, h1s are
always big and bold), but there are some variations (the blockquote element
for long quotes may or may not be indented).

If you think the h1 is too big and clunky as the browser renders it, just change
it with your own style sheet rule. Resist the urge to mark up the heading with
another element just to get it to look better—for example, using an h3 instead
of an h1 so it isn’t as large. In the days before ubiquitous style sheet support,
elements were abused in just that way. You should always choose elements
based on how accurately they describe the content, and don’t worry about
the browser’s default rendering.

We’ll fix the presentation of the page with style sheets in a moment, but first,
let’s add an image to the page.

STEP 4: ADD AN IMAGE

What fun is a web page with no images? In EXERCISE 4-4, we’ll add an image
to the page with the img element. Images will be discussed in more detail in
Chapter 7, Adding Images, but for now, they give us an opportunity to
introduce two more basic markup concepts: empty elements and attributes.

Empty Elements
So far, nearly all of the elements we’ve used in the Black Goose Bistro home
page have followed the syntax shown in FIGURE 4-6: a bit of text content sur-
rounded by start and end tags.

A handful of elements, however, do not have content because they are used
to provide a simple directive. These elements are said to be empty. The image
element (img) is an example of an empty element. It tells the browser to get
an image file from the server and insert it at that spot in the flow of the text.
Other empty elements include the line break (br), thematic breaks (hr, a.k.a.
“horizontal rules”), and elements that provide information about a document
but don’t affect its displayed content, such as the meta element that we used
earlier.

FIGURE 4-12 shows the very simple syntax of an empty element (compare it
to FIGURE 4-6).

Part II. HTML for Structure

Step 4: Add an Image

62

<p>1005 Gravenstein Highway North
Sebastopol, CA 95472</p>

Example: The br element inserts a line break.

<element-name>

FIGURE 4-12. Empty element structure.

Attributes
Let’s get back to adding an image with the empty img element. Obviously, an
 tag is not very useful by itself—it doesn’t indicate which image to use.
That’s where attributes come in. Attributes are instructions that clarify or
modify an element. For the img element, the src (short for “source”) attribute
is required, and specifies the location (URL) of the image file.

The syntax for an attribute is as follows:

attributename="value"

Attributes go after the element name, separated by a space. In non-empty ele-
ments, attributes go in the opening tag only:

<element attributename="value">
<element attributename="value">Content</element>

You can also put more than one attribute in an element in any order. Just
keep them separated with spaces:

<element attribute1="value" attribute2="value">

FIGURE 4-13 shows an img element with its required attributes labeled.

Attribute Attribute

Attribute name ValueValue Attribute name

Attribute names and values are separated by an equals sign (=)

Multiple attributes are separated by a space

FIGURE 4-13. An img element with two attributes.

What Is That Extra Slash?
If you poke around in source
documents for existing web pages,
you may see empty elements
with extra slashes at the end, like
so: ,
, <meta />,
and <hr />. That indicates the
document was written according
to the stricter rules of XHTML. In
XHTML, all elements, including
empty elements, must be closed (or
terminated, to use the proper term).
You terminate empty elements by
adding a trailing slash before the
closing bracket. The preceding
character space is not required but
was used for backward compatibility
with browsers that did not have
XHTML parsers, so ,
,
and so on are valid.

Attributes are
instructions that clarify
or modify an element.

4. Creating a Simple Page

Step 4: Add an Image

63

Here’s what you need to know about attributes:

• Attributes go after the element name in the opening tag only, never in the
closing tag.

• There may be several attributes applied to an element, separated by
spaces in the opening tag. Their order is not important.

• Most attributes take values, which follow an equals sign (=). In HTML,
some attribute values are single descriptive words. For example, the
checked attribute, which makes a form checkbox checked when the form
loads, is equivalent to checked="checked". You may hear this type of
attribute called a Boolean attribute because it describes a feature that is
either on or off.

• A value might be a number, a word, a string of text, a URL, or a measure-
ment, depending on the purpose of the attribute. You’ll see examples of
all of these throughout this book.

• Wrapping attribute values in double quotation marks is a strong conven-
tion, but note that quotation marks are not required and may be omitted.
In addition, either single or double quotation marks are acceptable as
long as the opening and closing marks match. Note that quotation marks
in HTML files need to be straight ("), not curly (”).

• The attribute names and values available for each element are defined in
the HTML specifications; in other words, you can’t make up an attribute
for an element.

• Some attributes are required, such as the src and alt attributes in the
img element. The HTML specification also defines which attributes are
required in order for the document to be valid.

Now you should be more than ready to try your hand at adding the img ele-
ment with its attributes to the Black Goose Bistro page in EXERCISE 4-4. We’ll
throw a few line breaks in there as well.

EXERCISE 4-4. Adding an image

1. If you’re working along, the first thing you’ll need to do is get a copy of the image file on
your hard drive so you can see it in place when you open the file locally. The image file
is provided in the materials for this chapter (learningwebdesign.com/5e/materials).
You can also get the image file by saving it right from the sample web page online at
learningwebdesign.com/5e/materials/ch04/bistro. Right-click (or Control-click on a
Mac) the goose image and select “Save to disk” (or similar) from the pop-up menu, as
shown in FIGURE 4-14. Name the file blackgoose.png. Be sure to save it in the bistro
folder with index.html.

2. Once you have the image, insert it at the beginning of the first-level heading by typing in
the img element and its attributes as shown here:

<h1>Black Goose Bistro</h1>

Part II. HTML for Structure

Step 4: Add an Image

64

Windows: Right-click
on the image to access
the pop-up menu.

Mac: Control-click on
the image to access the
pop-up menu. The
options may vary by
browser.

FIGURE 4-14. Saving an image file from a page on the web.

The src attribute provides the name of the image file that should be inserted, and the
alt attribute provides text that should be displayed if the image is not available. Both of
these attributes are required in every img element.

3. I’d like the image to appear above the title, so add a line break (br) after the img
element to start the headline text on a new line.

<h1>
Black Goose Bistro</h1>

4. Let’s break up the last paragraph into three lines for better clarity. Drop a
 tag at the
spots you’d like the line breaks to occur. Try to match the screenshot in FIGURE 4-15.

5. Now save index.html and open or refresh it in the browser window. The page should
look like the one shown in FIGURE 4-15. If it doesn’t, check to make sure that the
image file, blackgoose.png, is in the same directory as index.html. If it is, then check to
make sure that you aren’t missing any characters, such as a closing quote or bracket, in
the img element markup.

FIGURE 4-15. The Black Goose Bistro page with the logo image.

4. Creating a Simple Page

Step 4: Add an Image

65

STEP 5: CHANGE THE LOOK WITH A
STYLE SHEET

Depending on the content and purpose of your website, you may decide
that the browser’s default rendering of your document is perfectly adequate.
However, I think I’d like to pretty up the Black Goose Bistro home page a bit
to make a good first impression on potential patrons. “Prettying up” is just
my way of saying that I’d like to change its presentation, which is the job of
Cascading Style Sheets (CSS).

In EXERCISE 4-5, we’ll change the appearance of the text elements and the
page background by using some simple style sheet rules. Don’t worry about
understanding them all right now. We’ll get into CSS in more detail in Part
III. But I want to at least give you a taste of what it means to add a “layer” of
presentation onto the structure we’ve created with our markup.

EXERCISE 4-5. Adding a style sheet

1. Open index.html if it isn’t open already. We’re going to use the
style element to apply a very simple embedded style sheet to
the page. This is just one of the ways to add a style sheet; the
others are covered in Chapter 11, Introducing Cascading
Style Sheets.

2. The style element is placed inside the document head. Start
by adding the style element to the document as shown here:

<head>
 <meta charset="utf-8">
 <title>Black Goose Bistro</title>
 <style>

 </style>
</head>

3. Next, type the following style rules within the style element
just as you see them here. Don’t worry if you don’t know exactly
what’s going on (although it’s fairly intuitive). You’ll learn all
about style rules in Part III.

<style>
body {
 background-color: #faf2e4;
 margin: 0 10%;
 font-family: sans-serif;
 }
h1 {
 text-align: center;
 font-family: serif;
 font-weight: normal;
 text-transform: uppercase;
 border-bottom: 1px solid #57b1dc;
 margin-top: 30px;
}

h2 {
 color: #d1633c;
 font-size: 1em;
}
</style>

4. Now it’s time to save the file and take a look at it in the browser.
It should look like the page in FIGURE 4-16. If it doesn’t, go
over the style sheet to make sure you didn’t miss a semicolon or
a curly bracket. Look at the way the page looks with our styles
compared to the browser’s default styles (FIGURE 4-15).

FIGURE 4-16. The Black Goose Bistro page after CSS style
rules have been applied.

Part II. HTML for Structure

Step 5: Change the Look with a Style Sheet

66

